Statistical Downscaling of Seasonal Forecasts of Sea Level Anomalies for U.S. Coasts

Author:

Long Xiaoyu12ORCID,Shin Sang‐Ik12ORCID,Newman Matthew2ORCID

Affiliation:

1. CIRES University of Colorado Boulder Boulder CO USA

2. NOAA Physical Sciences Laboratory Boulder CO USA

Abstract

AbstractIncreasing coastal inundation risk in a warming climate will require accurate and reliable seasonal forecasts of sea level anomalies at fine spatial scales. In this study, we explore statistical downscaling of monthly hindcasts from six current seasonal prediction systems to provide a high‐resolution prediction of sea level anomalies along the North American coast, including at several tide gauge stations. This involves applying a seasonally invariant downscaling operator, constructing by linearly regressing high‐resolution (1/12°) ocean reanalysis data against its coarse‐grained (1°) counterpart, to each hindcast ensemble member for the period 1982–2011. The resulting high‐resolution coastal hindcasts have significantly more deterministic skill than the original hindcasts interpolated onto the high‐resolution grid. Most of this improvement occurs during summer and fall, without impacting the seasonality of skill noted in previous studies. Analysis of the downscaling operator reveals that it boosts skill by amplifying the most predictable patterns while damping the less predictable patterns.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skillful multiyear to decadal predictions of sea level in the North Atlantic Ocean and U.S. East Coast;Communications Earth & Environment;2023-11-17

2. Projecting 21st century global and regional sea-level changes;Reference Module in Earth Systems and Environmental Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3