Strategy to Enhance Geological CO2 Storage Capacity in Saline Aquifer

Author:

Li Songyan12,Wang Peng2,Wang Zhoujie2ORCID,Cheng Hao2,Zhang Kaiqiang3ORCID

Affiliation:

1. Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao P. R. China

2. School of Petroleum Engineering China University of Petroleum (East China) Qingdao P. R. China

3. Institute of Energy Peking University Beijing P. R. China

Abstract

AbstractGeological CO2 storage is an emerging topic in energy and environmental community, which is, as a commonly accepted sense, considered as the most promising and powerful approach to mitigate the global carbon emissions during the transition to net‐zero. Of the geological media which initially considered cover the saline aquifers, oil and gas reservoirs, coal beds, and potentially basalts, up to now only the first two choices have been proven to be the most capable storage sites and successfully implemented at pilot/commercial scales. Here, two tandem papers propose novel strategies for the first time, by synthesizing and utilizing new high‐dryness CO2 foam, to enhance geological CO2 storage capacity in saline aquifer and oil and gas reservoirs. In this paper, a new high‐dryness CO2 foam is synthesized and injected into the saline aquifers to explore the storage capacity enhancement, with the unique foam‐induced advantages of sweep area expansion and storage efficiency improvement. Such a new idea is specifically evaluated and validated through a series of static analytical and dynamic performance experiments. With the optimum surfactant concentration of 0.5 wt%, the foaming volume and quality are determined to be 521 mL and 80.81%, respectively, which also shows excellent salt tolerance with 45,000 ppm Na+, 25,000 ppm Ca2+, and 25,000 ppm Mg2+. Moreover, the water consumption for CO2 storage decreases from 464.31 g/mol at 25% foam quality to 67.38 g/mol at 85% foam quality by using the new CO2 foam. Overall, the newly synthesized CO2 foam could effectively enhance geological CO2 storage capacity and concurrently diminish water consumption, therefore realizing the win‐win environment and economic benefits.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3