On the Energy‐Dependent Deep (L < 3.5) Penetration of Radiation Belt Electrons

Author:

Mei Yang12ORCID,Li Xinlin12ORCID,Zhao Hong3ORCID,Sarris Theodore4ORCID,Khoo Lengying5ORCID,Hogan Benjamin12ORCID,O’Brien Declan12ORCID,Califf Sam67ORCID

Affiliation:

1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder CO USA

2. Department of Aerospace Engineering Sciences University of Colorado Boulder Boulder CO USA

3. Department of Physics Auburn University Auburn AL USA

4. Department of Electrical and Computer Engineering Democritus University of Thrace Xanthi Greece

5. Department of Astrophysical Sciences Princeton University Princeton NJ USA

6. CIRES University of Colorado Boulder CO USA

7. National Centers for Environmental Information Boulder CO USA

Abstract

AbstractDeep penetration of outer radiation belt electrons to low L (<3.5) has long been recognized as an energy‐dependent phenomenon but with limited understanding. The Van Allen Probes measurements have clearly shown energy‐dependent electron penetration during geomagnetically active times, with lower energy electrons penetrating to lower L. This study aims to improve our ability to model this phenomenon by quantitatively considering radial transport due to large‐scale azimuthal electric fields (E‐fields) as an energy‐dependent convection term added to a radial diffusion Fokker‐Planck equation. We use a modified Volland‐Stern model to represent the enhanced convection field at lower L to match the observations of storm time values of E‐field. We model 10–400 MeV/G electron phase space density with an energy‐dependent radial diffusion coefficient and this convection term and show that the model reproduces the observed deep penetrations well, suggesting that time‐variant azimuthal E‐fields contribute preferentially to the deep penetration of lower‐energy electrons.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3