Affiliation:
1. State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER) Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
2. University of Chinese Academy of Sciences Beijing China
3. School of Ocean Sciences Bangor University Bangor UK
Abstract
AbstractThe Tibetan Plateau (TP) has warmed at a rate twice the global average and presents unique warming patterns in surface temperature changes. However, key characteristics of glacier surface heatwave duration and intensity over the TP during the present extreme warming period are still unknown. In this study, we show that surface temperatures in glacial regions of the TP (0.37 ± 0.10°C per decade) have increased faster than those in non‐glacial areas (0.29 ± 0.05°C per decade) between 2001 and 2020. Moreover, the duration (5.3 ± 3.2 days per decade) and cumulative intensity (24.9 ± 16.3 days °C per decade) of glacier surface heatwaves have increased significantly during autumn. Our results demonstrate an elevation dependence to these key warming characteristics, which we also suggest are associated with extreme glacier mass loss. Here, we highlight potential threats to the sustainability of glacier water resources and increasing risk of glacier related hazards at the “roof of the world.”
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献