Affiliation:
1. Department of Atmospheric and Oceanic Sciences University of Maryland, College Park MD College Park USA
2. Department of Atmospheric and Earth Science University of Houston Houston TX USA
3. Program in Atmospheric and Oceanic Sciences Princeton University NJ Princeton USA
Abstract
AbstractDue to surface heating, the morning boundary layer transits from stable to neutral or convective conditions, exerting critical influences on low tropospheric thermodynamics. Low clouds closely interact with the boundary layer development, yet their interactions bear considerable uncertainties. Our study reveals that cloud‐surface coupling alters the morning transition from stable to unstable boundary layer and thus notably affects the diurnal variation of the boundary layer. Specifically, due to the reduction in surface fluxes, decoupled clouds can delay the process of eroding nocturnal inversion by 0.8‐hr and even prevent the transition of the boundary layer from happening for 12% of decoupled cases, keeping the boundary layer in a stable state during the noontime. On the other hand, when clouds are coupled with the surface, cloud‐top radiative cooling can directly cool the upper boundary layer to facilitate sub‐cloud convection, leading to an unstable boundary layer in the earlier morning.
Funder
National Science Foundation
U.S. Department of Energy
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献