A CMA‐ES Algorithm Allowing for Random Parameters in Model Calibration

Author:

Sauerland Volkmar12ORCID,von Hallern Claudine3,Kriest Iris1ORCID,Getzlaff Julia1ORCID

Affiliation:

1. Biogeochemical Modelling GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany

2. Mathematisches Seminar Christian‐Albrechts‐Universität zu Kiel Kiel Germany

3. Department Mathematik/CEN Universität Hamburg Hamburg Germany

Abstract

AbstractIn geoscience and other fields, researchers use models as a simplified representation of reality. The models include processes that often rely on uncertain parameters that reduce model performance in reflecting real‐world processes. The problem is commonly addressed by adapting parameter values to reach a good match between model simulations and corresponding observations. Different optimization tools have been successfully applied to address this task of model calibration. However, seeking one best value for every single model parameter might not always be optimal. For example, if model equations integrate over multiple real‐world processes which cannot be fully resolved, it might be preferable to consider associated model parameters as random parameters. In this paper, a random parameter is drawn from a wide probability distribution for every singe model simulation. We developed an optimization approach that allows us to declare certain parameters random while optimizing those that are assumed to take fixed values. We designed a corresponding variant of the well known Covariance Matrix Adaption Evolution Strategy (CMA‐ES). The new algorithm was applied to a global biogeochemical circulation model to quantify the impact of zooplankton mortality on the underlying biogeochemistry. Compared to the deterministic CMA‐ES, our new method converges to a solution that better suits the credible range of the corresponding random parameter with less computational effort.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3