Affiliation:
1. Department of Meteorology and Atmospheric Science The Pennsylvania State University University Park PA USA
2. Center for Advanced Data Assimilation and Predictability Techniques The Pennsylvania State University University Park PA USA
3. Data Assimilation Research Section Computational Information Systems Laboratory National Center for Atmospheric Research Boulder CO USA
Abstract
AbstractThe meteorological characteristics of cloudy atmospheric columns can be very different from their clear counterparts. Thus, when a forecast ensemble is uncertain about the presence/absence of clouds at a specific atmospheric column (i.e., some members are clear while others are cloudy), that column's ensemble statistics will contain a mixture of clear and cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algorithms currently used in numerical weather prediction. Hence, ensemble data assimilation algorithms that can handle such mixtures can potentially outperform currently used algorithms. In this study, we demonstrate the potential benefits of addressing such mixtures through a bi‐Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is compared against the commonly used ensemble Kalman filter (EnKF) using perfect model observing system simulated experiments (OSSEs) with a realistic weather model (the Weather Research and Forecast model). Synthetic all‐sky infrared radiance observations are assimilated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the horizontal wind components, temperature, specific humidity, and simulated upper tropospheric water vapor channel infrared brightness temperatures. This study is one of the first to demonstrate the potential of a Gaussian mixture model EnKF with a realistic weather model. Our results thus motivate future research toward improving numerical Earth system predictions though explicitly handling mixture statistics.
Funder
Office of Naval Research
National Aeronautics and Space Administration
National Center for Atmospheric Research
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献