An Urban Scheme for the ECMWF Integrated Forecasting System: Global Forecasts and Residential CO2 Emissions

Author:

McNorton J.1ORCID,Agustí‐Panareda A.1,Arduini G.1ORCID,Balsamo G.1ORCID,Bousserez N.1,Boussetta S.1,Chericoni M.2,Choulga M.1,Engelen R.1ORCID,Guevara M.3ORCID

Affiliation:

1. European Centre for Medium‐Range Weather Forecasts Reading UK

2. 3B Meteo Milan Italy

3. Barcelona Supercomputing Center Barcelona Spain

Abstract

AbstractThe impact of urbanization on local weather patterns affects over half the global population. Global numerical weather prediction systems have reached a resolution at which urban conurbations can be spatially resolved, justifying their representation within land surface parameterizations with the aim of improving local predictions. Additionally, real‐time atmospheric monitoring of trace gas emissions can utilize weather variables relevant for urban areas. We investigated whether a simple single‐layer urban canopy scheme can be used within a global forecast model to jointly improve predictions of near‐surface weather variables and residential CO2 emissions. The scheme has been implemented in the Integrated Forecast System used operationally at the European Centre for Medium‐Range Weather Forecasts running at ∼9 km horizontal resolution. First, we selected a suitable urban land cover map (ECOCLIMAP‐SG) based on comparisons with regional data and land surface temperature MODIS retrievals. The urban scheme is verified by providing improved 2 m temperature (∼10%) and 10 m wind (∼17%) RMSE values for both summer and winter months around urban environments. The influence of the scheme was most noticeable at night. Additionally, we have implemented a simple temperature‐dependent residential emissions model to calculate real‐time CO2 heating emissions. These were validated against existing offline products, national reporting and by comparing atmospheric simulations with total column CO2 observations. The results show an improved temporal variability of emissions, which arise from synoptic scale temperature changes. Given the improved predictability from the urban scheme for both weather and emissions, it will be operationally implemented in an upcoming model cycle.

Funder

HORIZON EUROPE Framework Programme

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3