Integration of a Groundwater Model to the Noah Land Surface Model for Aquifer‐Soil Interaction

Author:

Samuel Jerry B.12ORCID,Chakraborty Arindam123ORCID

Affiliation:

1. Centre for Atmospheric and Oceanic Sciences Indian Institute of Science Bengaluru India

2. Divecha Centre for Climate Change Indian Institute of Science Bengaluru India

3. DST Centre of Excellence in Climate Change, Divecha Centre for Climate Change Indian Institute of Science Bengaluru India

Abstract

AbstractSoil water‐groundwater interactions are important in determining the moisture profile in a soil column. However, the Noah Land Surface Model (Noah LSM), the land surface component of several general circulation models, does not consider groundwater effects. The present study investigates the impact of integrating a groundwater model into the Noah LSM. By performing experiments forced by observations at the surface, insights into the characteristics of soil moisture evolution with and without the aquifer are investigated. In the absence of surface precipitation, soil moisture is shown to exhibit an exponential decay rate without the aquifer (termed as Noah‐Cntl). This is because evapotranspiration dominates other processes governing the soil moisture evolution. Based on scale analysis, we derived an analytical equation that could well represent the aforementioned exponential variation in soil moisture. Presence of the aquifer (termed as Noah‐GW) makes the capillary processes important as well. The result is a slower decay of soil moisture as compared to Noah‐Cntl without surface precipitation. Soil moisture evolution in both the models is a function of vegetation and soil types. As a result, the aforementioned decay timescale displays significant heterogeneity over the Indian region, with Central India exhibiting relatively faster decay rates. We also performed 24‐year long experiments with observed interannually varying forcing that indicates an enhancement in the annual mean soil moisture at all levels due to groundwater effects. This enhancement is particularly prominent during the post‐monsoon season, reaffirming the results of the drain‐out experiments mentioned above.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3