Affiliation:
1. Department for Biogeochemical Integration Max‐Planck‐Institute for Biogeochemistry Jena Germany
2. National Space Science Center Chinese Academy of Sciences Beijing China
3. Departamento de Ciências e Engenharia do Ambiente, DCEA Faculdade de Ciências e Tecnologia, FCT Universidade Nova de Lisboa Caparica Portugal
4. ELLIS Unit Jena Jena Germany
Abstract
AbstractIn a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from plant‐functional‐type (PFT)‐dependent parameterizations. SPIE refers to predicting model parameters using an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE with 11 typical parameter extrapolating methods, including PFT‐ and climate‐specific parameterizations, global and PFT‐based parameter optimization, site‐similarity, and regression approaches. All methods were assessed using Nash‐Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared error, and contrasted with site‐specific calibrations. Ten‐fold cross‐validated results showed that SPIE had the best performance across sites, various temporal scales and assessing metrics. Taking site‐level calibrations as a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches showed lower NSE. The Shapley value, layer‐wise relevance and partial dependence showed that vegetation features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong limitations observed in many standard parameterization methods. We argue that expanding SPIE to other models overcomes current limits and serves as an entry point to investigate the robustness and generalization of different models.
Funder
Horizon 2020 Framework Programme
European Space Agency
European Research Council
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献