Toward Robust Parameterizations in Ecosystem‐Level Photosynthesis Models

Author:

Bao Shanning12ORCID,Alonso Lazaro1,Wang Siyuan1,Gensheimer Johannes1,De Ranit1,Carvalhais Nuno134ORCID

Affiliation:

1. Department for Biogeochemical Integration Max‐Planck‐Institute for Biogeochemistry Jena Germany

2. National Space Science Center Chinese Academy of Sciences Beijing China

3. Departamento de Ciências e Engenharia do Ambiente, DCEA Faculdade de Ciências e Tecnologia, FCT Universidade Nova de Lisboa Caparica Portugal

4. ELLIS Unit Jena Jena Germany

Abstract

AbstractIn a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from plant‐functional‐type (PFT)‐dependent parameterizations. SPIE refers to predicting model parameters using an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE with 11 typical parameter extrapolating methods, including PFT‐ and climate‐specific parameterizations, global and PFT‐based parameter optimization, site‐similarity, and regression approaches. All methods were assessed using Nash‐Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared error, and contrasted with site‐specific calibrations. Ten‐fold cross‐validated results showed that SPIE had the best performance across sites, various temporal scales and assessing metrics. Taking site‐level calibrations as a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches showed lower NSE. The Shapley value, layer‐wise relevance and partial dependence showed that vegetation features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong limitations observed in many standard parameterization methods. We argue that expanding SPIE to other models overcomes current limits and serves as an entry point to investigate the robustness and generalization of different models.

Funder

Horizon 2020 Framework Programme

European Space Agency

European Research Council

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3