Machine Learning‐Derived Inference of the Meridional Overturning Circulation From Satellite‐Observable Variables in an Ocean State Estimate

Author:

Solodoch Aviv1ORCID,Stewart Andrew L.1ORCID,McC. Hogg Andrew23ORCID,Manucharyan Georgy E.4ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences University of California in Los Angeles Los Angeles CA USA

2. Research School of Earth Sciences Australian National University Canberra ACT Australia

3. ARC Centre of Excellence for Climate Extremes Sydney NSW Australia

4. School of Oceanography University of Washington Seattle WA USA

Abstract

AbstractThe oceanic Meridional Overturning Circulation (MOC) plays a key role in the climate system, and monitoring its evolution is a scientific priority. Monitoring arrays have been established at several latitudes in the Atlantic Ocean, but other latitudes and oceans remain unmonitored for logistical reasons. This study explores the possibility of inferring the MOC from globally‐available satellite measurements via machine learning (ML) techniques, using the ECCOV4 state estimate as a test bed. The methodological advantages of the present approach include the use purely of available satellite data, its applicability to multiple basins within a single ML framework, and the ML model simplicity (a feed‐forward fully connected neural network (NN) with small number of neurons). The ML model exhibits high skill in MOC reconstruction in the Atlantic, Indo‐Pacific, and Southern Oceans. The approach achieves a higher skill in predicting the model Southern Ocean abyssal MOC than has previously been achieved via a dynamically‐based approach. The skill of the model is quantified as a function of latitude in each ocean basin, and of the time scale of MOC variability. We find that ocean bottom pressure generally has the highest reconstruction skill potential, followed by zonal wind stress. We additionally test which combinations of variables are optimal. Furthermore, ML interpretability techniques are used to show that high reconstruction skill in the Southern Ocean is mainly due to (NN processing of) bottom pressure variability at a few prominent bathymetric ridges. Finally, the potential for reconstructing MOC strength estimates from real satellite measurements is discussed.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observing Antarctic Bottom Water in the Southern Ocean;Frontiers in Marine Science;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3