Improvements in the Land and Crop Modeling Over Flooded Rice Fields by Incorporating the Shallow Paddy Water

Author:

Xu Xiaoyu1,Maruyama Atsushi2ORCID,Kusaka Hiroyuki3ORCID

Affiliation:

1. College of General Aviation and Flight Nanjing University of Aeronautics and Astronautics Nanjing China

2. Institute for Agro‐Environmental Sciences National Agriculture and Food Research Organization Tsukuba Japan

3. Center for Computational Sciences University of Tsukuba Tsukuba Japan

Abstract

AbstractFlooded rice paddies are important for modifying land surface energy and water budgets, especially in Asian countries. This study incorporated shallow paddy water into the Noah with Multi‐Parameterization (Noah‐MP) model to enhance its performance in capturing the distinct features of small Bowen ratios over flooded rice fields. The paddy surface water was parameterized as one integrated layer along with the top soil layer, and meteorological measurements from two crop sites in Japan, that is, SAITO (early rice) and SAGA (late rice), were employed for model evaluation at the field scale. The simulation results show that the model performance was significantly improved by combining the incorporation of paddy water and the calibration of rice crop parameters, particularly at SAGA. Compared with the reference run using the original version of Noah‐MP for SAGA, the underestimation in latent heat and the overestimation in sensible heat during daytime were decreased by ∼74 W m−2 (∼67%) and ∼92 W m−2 (∼55%), respectively. Approximately 60%–70% of this improvement was contributed by using calibrated rice crop parameters, while the rest of 30%–40% was from further incorporating paddy water. The decreased ground surface resistance owing to the presence of paddy water was crucial for capturing the features of small Bowen ratios. The observed water depth might help mitigate the underestimation of latent heat nonlinearly. This work may benefit the study of land‐atmosphere interactions and local and regional weather and climate in Asia with the widely used coupled Weather Research and Forecasting/Noah‐MP model.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3