Eddy‐Mean Flow Interaction With a Multiple Scale Quasi Geostrophic Model

Author:

Deremble Bruno1ORCID,Uchida Takaya12ORCID,Dewar William K.13ORCID,Samelson Roger M.4ORCID

Affiliation:

1. Institut des Géosciences de l'Environnement CNRS INRAE IRD Grenoble‐INP Université Grenoble Alpes Grenoble France

2. Center for Ocean Atmospheric Prediction Studies Florida State University Tallahassee FL USA

3. Department of Earth, Ocean, and Atmospheric Science Florida State University Tallahassee FL USA

4. College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA

Abstract

AbstractParameterization of mesoscale eddies in coarse resolution ocean models is necessary to include the effect of eddies on the large‐scale oceanic circulation. We propose to use a multiple‐scale Quasi‐Geostrophic (MSQG) model to capture the eddy dynamics that develop in response to a prescribed large‐scale flow. The MSQG model consists in extending the traditional quasi geostrophic (QG) dynamics to include the effects of a variable Coriolis parameter and variable background stratification. Solutions to this MSQG equation are computed numerically and compared to a full primitive equation model. The large‐scale flow field permits baroclinically unstable QG waves to grow. These instabilities saturate due to non‐linearities and a filtering method is applied to remove large‐scale structures that develop due to the upscale cascade. The resulting eddy field represents a dynamically consistent response to the prescribed background flow, and can be used to rectify the large‐scale dynamics. Comparisons between Gent‐McWilliams eddy parameterization and the present solutions show large regions of agreement, while also indicating areas where the eddies feed back onto the large scale in a manner that the Gent‐McWilliams parameterization cannot capture. Also of interest is the time variability of the eddy feedback which can be used to build stochastic eddy parameterizations.

Funder

Earth Sciences Division

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3