The Effect of Advection on the Three Dimensional Distribution of Turbulent Kinetic Energy and Its Generation in Idealized Tropical Cyclone Simulations

Author:

Wadler Joshua B.1ORCID,Nolan David. S.2ORCID,Zhang Jun A.34,Shay Lynn K.2,Olson Joseph B.5ORCID,Cione Joseph J.4ORCID

Affiliation:

1. Department of Applied Aviation Sciences Embry‐Riddle Aeronautical University Daytona Beach FL USA

2. Rosenstiel School of Marine, Atmospheric, and Earth Sciences University of Miami Coral Gables FL USA

3. Cooperative Institute for Marine and Atmospheric Science University of Miami Coral Gables FL USA

4. Atlantic Oceanographic and Meteorological Laboratory Hurricane Research Division NOAA Miami FL USA

5. Global Systems Laboratory NOAA Boulder CO USA

Abstract

AbstractThe distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal‐mean radius of maximum wind speed at 1‐km height. As in a previous study, the axisymmetric TKE decreases with height in the eyewall, but more abruptly in simulations without TKE advection. The largest TKE budget terms are shear generation and dissipation, though variability in vertical turbulent transport and buoyancy production affect the change in the azimuthal‐mean TKE distribution. The general relationships between the TKE budget terms are consistent across different radii, regardless of storm intensity. In terms of the asymmetric distribution in the eyewall, TKE is maximized in the front‐left quadrant where the sea surface temperature (SST) is highest and is minimized in the rear‐right quadrant where the SST is the lowest. In the category‐5 simulation, the height of the TKE maximum varies significantly in the eyewall between quadrants and is between ∼400 m in the rear‐right quadrant and ∼1,000 m in the front‐left quadrant. When TKE advection is included in the simulations, the maximum eyewall TKE values are downwind compared to the simulations without TKE advection.

Funder

Cooperative Institute for Marine and Atmospheric Studies, University of Miami

Division of Atmospheric and Geospace Sciences

NOAA Research

Integrative and Collaborative Education and Research

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3