High‐Resolution, Basin‐Scale Simulations Reveal the Impact of Intermediate Zonal Jets on the Atlantic Oxygen Minimum Zones

Author:

Calil Paulo H. R.1ORCID

Affiliation:

1. Institute of Carbon Cycles Helmholtz‐Zentrum Hereon Geesthacht Germany

Abstract

AbstractEastward zonal jets at intermediate depths of 300–800 m connect the oxygen‐rich western boundary of the Atlantic basin with the oxygen minimum zones (OMZs) on the eastern boundary. They are not well represented in climate models because the low horizontal resolution of these models yields excessive viscosity. We use two physical‐biogeochemical model configurations of the Tropical Atlantic to show that the increase in resolution results in more robust intermediate zonal jets and a better representation of the OMZs. The OMZ structure is distorted at low‐resolution as surface, westward jets advect low‐oxygen waters from the eastern boundary much further west than in the climatology. The emergence of robust eastward jets in the high‐resolution run alleviate this problem and reproduce the Atlantic OMZs more accurately. The asymmetry between westward and eastward jets occurs because the former are associated with homogenous potential vorticity regions originating in the eastern boundary while the latter are associated with potential vorticity gradients. Intermediate, eastward jets constrain the westward expansion of the OMZs by supplying oxygen to their western edge. Within the OMZs, higher resolution allows a better representation of the boundary current system and eddying processes at depth which redistribute of low oxygen values from the productive eastern boundary. Basin‐scale, high‐resolution simulations reproduce more accurately the transfer of energy across scales that results in robust zonal jets as well as their impact on the ocean biogeochemistry. Accurate model predictions provide a pathway to disentangle natural and anthropogenic causes of ocean deoxygenation.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eddy‐Mediated Turbulent Mixing of Oxygen in the Equatorial Pacific;Journal of Geophysical Research: Oceans;2024-02-27

2. The intrinsic variability of the Indonesian Throughflow;Frontiers in Marine Science;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3