Affiliation:
1. Institute of Carbon Cycles Helmholtz‐Zentrum Hereon Geesthacht Germany
Abstract
AbstractEastward zonal jets at intermediate depths of 300–800 m connect the oxygen‐rich western boundary of the Atlantic basin with the oxygen minimum zones (OMZs) on the eastern boundary. They are not well represented in climate models because the low horizontal resolution of these models yields excessive viscosity. We use two physical‐biogeochemical model configurations of the Tropical Atlantic to show that the increase in resolution results in more robust intermediate zonal jets and a better representation of the OMZs. The OMZ structure is distorted at low‐resolution as surface, westward jets advect low‐oxygen waters from the eastern boundary much further west than in the climatology. The emergence of robust eastward jets in the high‐resolution run alleviate this problem and reproduce the Atlantic OMZs more accurately. The asymmetry between westward and eastward jets occurs because the former are associated with homogenous potential vorticity regions originating in the eastern boundary while the latter are associated with potential vorticity gradients. Intermediate, eastward jets constrain the westward expansion of the OMZs by supplying oxygen to their western edge. Within the OMZs, higher resolution allows a better representation of the boundary current system and eddying processes at depth which redistribute of low oxygen values from the productive eastern boundary. Basin‐scale, high‐resolution simulations reproduce more accurately the transfer of energy across scales that results in robust zonal jets as well as their impact on the ocean biogeochemistry. Accurate model predictions provide a pathway to disentangle natural and anthropogenic causes of ocean deoxygenation.
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献