Component Assessment of the Electric Transmission Grid to Hurricanes

Author:

Schumann Zachary D.1,Chini Christopher M.12ORCID

Affiliation:

1. Department of Systems Engineering and Management Air Force Institute of Technology Wright‐Patterson AFB OH USA

2. Earth Systems Predictability & Resilience Group Pacific Northwest National Laboratory Richland WA USA

Abstract

AbstractThe increased frequency and intensity of extreme weather events from climate change necessitates understanding impacts on critical infrastructure, particularly electrical transmission grids. One of the foundational concepts of a grid's resilience is its robustness to extreme weather events, such as hurricanes. Resilience of the electric grid to high wind speeds is predicated upon the location and physical characteristics of the system components. Previous modeling assessments of electric grid failure were done at the systems level with assumptions on location and type of specific components. To facilitate more explicit adaptation metrics, accurate component‐level information is needed. In this study, we build and utilize a data set of location, physical characteristics, and age of transmission structures for nine counties in the Florida Panhandle. These component characteristics were then simulated for failure under a variety of scenarios using fragility curves. Eight hurricanes were modeled using Hazus from the Federal Emergency Management Administration and the resulting impact to the network was assessed. The network was generated using the transmission lines and towers, showing increasing impacts to network efficiency with larger storms. Although modern transmission structures are built under the more stringent extreme wind loading construction standards, the prevalence of older, wooden transmission structures throughout the region poses a substantial risk to reliable electricity transmission during tropical cyclone events from the Gulf of Mexico.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3