Predicting Future Trends of Terrestrial Dissolved Organic Carbon Transport to Global River Systems

Author:

Nakhavali Mahdi (André)1ORCID,Lauerwald Ronny2ORCID,Regnier Pierre3,Friedlingstein Pierre45

Affiliation:

1. International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria

2. Université Paris‐Saclay INRAE AgroParisTech UMR ECOSYS Palaiseau France

3. Biogeochemistry and Modelling of the Earth System Department Geoscience Environment and Society Université Libre de Bruxelles Bruxelles Belgium

4. LMD/IPSL ENS PSL Université École Polytechnique Institut Polytechnique de Paris Sorbonne Université CNRS Paris France

5. University of Exeter College of Engineering Mathematics and Physical Sciences Exeter UK

Abstract

AbstractA fraction of CO2 uptake by terrestrial ecosystems is exported as organic carbon (C) through the terrestrial‐aquatic continuum. This translocated C plays a significant role in the terrestrial C balance; however, obtaining global assessments remains challenging due to the predominant reliance on empirical approaches. Leaching of dissolved organic C (DOC) from soils to rivers represents an important fraction of this C export and is assumed to drive a large proportion of the net‐heterotrophy of river systems and the related CO2 emissions. Using the model JULES‐DOCM, we projected DOC leaching trends over the 21st century based on three scenarios with high (RCP 2.6), intermediate (RCP 4.5), and low (RCP 8.5) climate mitigation efforts. The RCP 8.5 scenario led to the largest DOC leaching increase of +42% to 395 Tg C yr−1 by 2100. In comparison, RCP 2.6 and RCP 4.5 led to increases of 10% and 21%, respectively. Under RCP 8.5, the sub‐tropical zone showed the highest relative increase of 50% above current levels. In the boreal and tropical zones, the simulations revealed similar increases of 48% and 41%, respectively. However, given the pre‐eminence of the tropics in DOC leaching, the absolute increment is markedly substantial from this region (+59 Tg C yr−1). The temperate zone displayed the lowest relative increase with 35%. Our analysis identified the rising atmospheric CO2 concentration and its fertilizing effect on terrestrial NPP as the main reason for the future increase in DOC leaching.

Funder

European Commission

Horizon 2020 Framework Programme

Agence Nationale de la Recherche

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3