Amplified Extreme Floods and Shifting Flood Mechanisms in the Delaware River Basin in Future Climates

Author:

Sun Ning1ORCID,Wigmosta Mark S.12ORCID,Yan Hongxiang1ORCID,Eldardiry Hisham1ORCID,Yang Zhaoqing23,Deb Mithun3ORCID,Wang Taiping3,Judi David1

Affiliation:

1. Earth Systems Science Division Energy and Environment Directorate, Pacific Northwest National Laboratory Richland WA USA

2. Department of Civil and Environmental Engineering University of Washington Seattle WA USA

3. Coastal Sciences Division Energy and Environment Directorate, Pacific Northwest National Laboratory Seattle WA USA

Abstract

AbstractHistorical records in the Delaware River Basin reveal complex and spatially diverse flood generating mechanisms influenced by the region's mountains‐to‐plains gradients. This study focuses on predicting future flood hazards and understanding the underlying drivers of changes across the region. Using a process‐based hydrological model, we analyzed the hydrometeorological condition of each historical and future flood event. For each event, at the subbasin scale, we identified the dominant flood generating mechanism, including snowmelt, rain‐on‐snow, short‐duration rain, and long‐duration rain. The rain‐induced floods are further categorized based on the soil's Antecedent Moisture Condition (AMC) before the event, whether dry, normal, or wet. Our historical analysis suggests that rain‐on‐snow is the primary flood mechanism of the Upper Basin. Although most frequent, the magnitude of rain‐on‐snow floods is often less severe than short rain floods. In contrast, historical floods in the Lower Basin are primarily caused by short rain under normal AMC. Given the uncertainties in climate projections, we used an ensemble of future climate scenarios for flood projections. Despite variations in regional climate projections, coherent perspectives emerge: the region will shift toward a warmer, wetter climate, with a projected intensification of extreme floods. The Upper Basin is projected to experience a marked decrease in rain‐on‐snow floods, but a substantial increase in short rain floods with wet AMC. The largest increase in flood magnitude will be driven by short rains with wet AMC in the Upper Basin and by short rains with normal AMC in the Lower Basin.

Funder

U.S. Department of Energy

Office of Science

Biological and Environmental Research

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3