The Impact of Stratospheric Aerosol Injection on Extreme Fire Weather Risk

Author:

Touma Danielle12ORCID,Hurrell James W.1ORCID,Tye Mari R.2ORCID,Dagon Katherine2ORCID

Affiliation:

1. Department of Atmospheric Sciences Colorado State University Fort Collins CO USA

2. Climate and Global Dynamics National Center for Atmospheric Research Boulder CO USA

Abstract

AbstractStratospheric aerosol injection (SAI) would potentially be effective in limiting global warming and preserving large‐scale temperature patterns; however, there are still gaps in understanding the impact of SAI on wildfire risk. In this study, extreme fire weather is assessed in an Earth system model experiment that deploys SAI beginning in 2035, targeting a global temperature increase of 1.5°C above pre‐industrial levels under a moderate warming scenario. After SAI deployment, increases in extreme fire weather event frequency from climate change are dampened over much of the globe, including the Mediterranean, northeast Brazil, and eastern Europe. However, SAI has little impact over the western Amazon and northern Australia and causes larger increases in extreme fire weather frequency in west central Africa relative to the moderate emissions scenario. Variations in the impacts of warming and SAI on moisture conditions on different time scales determine the spatiotemporal differences in extreme fire weather frequency changes, and are plausibly linked to changes in synoptic‐scale circulation. This study highlights that regional and spatial heterogeneities of SAI climate effects simulated in a model are amplified when assessing wildfire risk, and that these differences must be accounted for when quantifying the possible benefit of SAI.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3