Land Use Change Alters Soil Organic Carbon: Constrained Global Patterns and Predictors

Author:

Huang Xingzhao1,Ibrahim Muhammed Mustapha2ORCID,Luo Yiqi3ORCID,Jiang Lifen3ORCID,Chen Ji4,Hou Enqing2

Affiliation:

1. Anhui Provincial Key Laboratory of Forest Resources and Silviculture Anhui Agricultural University Hefei China

2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems South China Botanical Garden Chinese Academy of Sciences Guangzhou China

3. School of Integrative Plant Science Cornell University Ithaca NY USA

4. State Key Laboratory of Loess and Quaternary Geology Institute of Earth Environment Chinese Academy of Sciences Xi'an China

Abstract

AbstractLand use change (LUC) alters the global carbon (C) stock, but our estimation of the alteration remains uncertain and is a major impediment to predicting the global C cycle. The uncertainty is partly due to the limited number and geographical bias of observations, and limited exploration of its predictors. Here we generated a comprehensive global database of 5,980 observations from 790 articles. The number of sites evaluated is at least seven times larger than in previous meta‐analyses. Our constrained estimates of different LUC's effects on soil organic C (SOC) and their variations across global climates reveal underestimation/overestimation in previous estimates. Converting forests and grasslands to croplands reduced SOC by 24.5% ± 1.53% (−11.03 ± 1.06 Mg ha−1) and 22.7% ± 1.22% (−8.09 ± 0.67 Mg ha−1), while 28.0% ± 1.56% (4.46 ± 0.42 Mg ha−1) and 33.5% ± 1.68% (5.8 ± 0.38 Mg ha−1) increases, respectively, were obtained in the reverse processes. Converting forests to grasslands decreased SOC by 2.1% ± 1.22% (−1.13 ± 0.44 Mg ha−1), while the reverse process increased SOC by 18.6% ± 1.73% (3.31 ± 0.51 Mg ha−1). Modeled relative importance of 10 drivers of LUC's impact on SOC revealed that higher initial SOC (iSOC) does not solely determine SOC loss in SOC‐negative LUC scenarios as previously proposed. Across four decades, reconverting croplands to forests and grasslands recovered only 49.5% (6.1 ± 0.51 Mg ha−1) and 75.3% (7.0 ± 0.38 Mg ha−1) of the iSOC, respectively, indicating the need for protecting C‐rich ecosystems. Our global data set advances information on LUC's effect on SOC and can be valuable to constrain Earth system models to reliably estimate global SOC stocks and plan climate change mitigation strategies.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3