Affiliation:
1. College of Atmospheric Sciences Lanzhou University Lanzhou China
2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions Nagqu Plateau Climate and Environment Observation and Research Station of Tibet Autonomous Region Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China
3. Collaborative Innovation Center for Western Ecological Safety Lanzhou University Lanzhou China
Abstract
AbstractClimate change exacerbates the threat of water scarcity over the drylands in East Asia (DEA), the world's most densely populated arid region. The water cycle continuously supplies water to support all life. Previous studies have focused on the change in individual hydrological components over DEA; however, how the projected water cycle changes under climate warming remains unclear. We demonstrate the projected response of the water cycle to global warming in different seasons utilizing the Coupled Model Intercomparison Project Phase 6. Winter in the DEA presents an intensification of the water cycle, reflected in coherent increases in evapotranspiration (E), precipitation (P), runoff, and surface soil moisture. In contrast, summer will experience a weakened water cycle in the northwestern DEA, while the southeastern part exhibits the opposite trend. From the surface and atmospheric water balance perspective, we further attribute the changes in E and P to gain a more comprehensive understanding. The increasing E is attributed to the combined effects of P and the vapor pressure deficit during summer, whereas it is dominated by P in winter. The increased P in summer is primarily attributed to the horizontal dynamic and vertical thermodynamic components associated with the strengthening and westward expansion of East Asia summer monsoon in the future. During winter, the increased P is mainly due to the vertical dynamic and horizontal thermodynamic components associated with the enhancement of vertical ascending motion and increased moisture.
Publisher
American Geophysical Union (AGU)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献