The Projected Response of the Water Cycle to Global Warming Over Drylands in East Asia

Author:

Ren Yu1ORCID,Yu Haipeng2ORCID,Huang Jianping3ORCID,Peng Ming1,Zhou Jie1

Affiliation:

1. College of Atmospheric Sciences Lanzhou University Lanzhou China

2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions Nagqu Plateau Climate and Environment Observation and Research Station of Tibet Autonomous Region Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China

3. Collaborative Innovation Center for Western Ecological Safety Lanzhou University Lanzhou China

Abstract

AbstractClimate change exacerbates the threat of water scarcity over the drylands in East Asia (DEA), the world's most densely populated arid region. The water cycle continuously supplies water to support all life. Previous studies have focused on the change in individual hydrological components over DEA; however, how the projected water cycle changes under climate warming remains unclear. We demonstrate the projected response of the water cycle to global warming in different seasons utilizing the Coupled Model Intercomparison Project Phase 6. Winter in the DEA presents an intensification of the water cycle, reflected in coherent increases in evapotranspiration (E), precipitation (P), runoff, and surface soil moisture. In contrast, summer will experience a weakened water cycle in the northwestern DEA, while the southeastern part exhibits the opposite trend. From the surface and atmospheric water balance perspective, we further attribute the changes in E and P to gain a more comprehensive understanding. The increasing E is attributed to the combined effects of P and the vapor pressure deficit during summer, whereas it is dominated by P in winter. The increased P in summer is primarily attributed to the horizontal dynamic and vertical thermodynamic components associated with the strengthening and westward expansion of East Asia summer monsoon in the future. During winter, the increased P is mainly due to the vertical dynamic and horizontal thermodynamic components associated with the enhancement of vertical ascending motion and increased moisture.

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3