The Limited Effect of Reduced Typhoon Frequency on Stream Hydrochemistry in a Subtropical Forest Watershed

Author:

Chang Chung‐Te12ORCID,Huang Jr‐Chuan3,Wang Lixin4ORCID,Wang Hsiang‐Hua5,Lee Jun‐Yi6,Lin Teng‐Chiu78ORCID

Affiliation:

1. Taiwan International Graduate Program (TIGP) –Ph.D. Program on Biodiversity Tunghai University Taichung Taiwan

2. Center for Ecology and Environment Tunghai University Taichung Taiwan

3. Department of Geography National Taiwan University Taipei Taiwan

4. Department of Earth Sciences Indiana University‐Purdue University Indianapolis (IUPUI) Indianapolis IN USA

5. Watershed Management Division Taiwan Forestry Research Institute Taipei Taiwan

6. Department of Soil and Environmental Sciences National Chung Hsing University Taichung Taiwan

7. Department of Life Science National Taiwan Normal University Taipei Taiwan

8. Department of Natural Resources and Environmental Studies National Dong Hwa University Hualien Taiwan

Abstract

AbstractTropical cyclones are often accompanied by large amount of precipitation potentially impacting stream hydrochemistry. Global warming is altering typhoon disturbance regime. Little is known about how cyclone changes, especially cyclone‐frequency reduction may affect stream hydrochemistry. In this study, we compared water and nutrient input via precipitation and output via streamflow between a frequent‐typhoon period (2013–2017), with 1.2 typhoon yr−1, and a no‐typhoon period (2018–2022) at a long‐term monitoring site, the Fushan Experimental Forest of Taiwan. Precipitation and streamflow quantities were not different between the two periods because typhoons increased the fluctuation but not the mean of monthly precipitation in the major typhoon months (July–September). Inputs of Mg2+, NO3, and SO42− via precipitation were greater in the frequent‐typhoon period than the no‐typhoon period while inputs of other ions were not different between the two periods. Only the output of Mg2+ was different between the two periods, greater in the frequent‐typhoon period. Output/input ratio of NO3 was greater in the no‐typhoon period than the frequent‐typhoon period despite the greater input in the frequent‐typhoon period, while no differences were found for others. Increases in mineralization rates due to warming is suggested to be the cause of the greater NO3 output/input ratio during the no‐typhoon period. Relationships between stream discharge and ion export were similar between the two periods both with and without removing typhoon events. The limited variation in hydrochemistry between periods of contrasting cyclone activities suggests high resilience of the undisturbed subtropical forests to changes in cyclone frequency at the decadal scale.

Funder

National Science and Technology Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3