Applying the Urban Systems Abstraction Hierarchy as a Tool for Flood Resilience

Author:

McClymont K.1ORCID,Bedinger M.12,Beevers L.12ORCID,Walker G. H.1

Affiliation:

1. Heriot‐Watt University Edinburgh Scotland

2. University of Edinburgh Edinburgh Scotland

Abstract

AbstractClimate change will mean cities are exposed to more frequent short‐term shocks such as floods. City‐scale resilience is achieved by understanding how these shocks interact with longer‐term stressors (e.g., social inequality). The Urban Systems Abstraction Hierarchy (USAH) has been developed for this purpose. In this paper, Glasgow (UK) is used as a case study application, to demonstrate how resilience theory can be operationalized through the application of the USAH. Results demonstrate how the USAH can quantify interdependencies between tangible physical entities in the city and intangible outcomes that monitor city stressors, and specifically how these outcomes change in response to a 1:200‐year fluvial flood return period in Glasgow. Resilience concepts such as multifunctionality, redundancy and diversity are applied to interpret the results and their implications for longer‐term resilience in Glasgow. The findings from the application of the USAH show that the outcome Social equality and equity is influential for longer‐term resilience in Glasgow, whilst Reliable communications and mobility is an important outcome for flood resilience.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3