Understanding the Impact of Precipitation Bias‐Correction and Statistical Downscaling Methods on Projected Changes in Flood Extremes

Author:

Michalek Alexander T.1ORCID,Villarini Gabriele12ORCID,Kim Taereem12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Princeton University Princeton NJ USA

2. High Meadows Environmental Institute Princeton University Princeton NJ USA

Abstract

AbstractThis study evaluates five bias correction and statistical downscaling (BCSD) techniques for daily precipitation and examines their impacts on the projected changes in flood extremes (i.e., 1%, 0.5%, and 0.2% floods). We use climate model outputs from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to conduct hydrologic simulations across watersheds in Iowa and determine historical and future flood extreme estimates based on generalized extreme value distribution fitting. Projected changes in these extremes are examined with respect to four Shared Socioeconomic Pathways (SSPs) alongside five BCSD techniques. We find the magnitude of the estimates of future annual exceedance probabilities (AEPs) are expected to increase under all SSPs, especially for the emission scenarios with higher greenhouse gases concentrations (i.e., SSP370 and SSP585). Our results also suggest the choice of BCSD impacts the magnitude of the projected changes, with the SSPs that play a more limited role compared to the choice of downscaling method. The variability in projected flood changes across Iowa is similar across the downscaling technique but increases as the AEP increases. Our findings provide insights into the impact of downscaling techniques on flood extremes' projections and useful information for climate planning across the state.

Funder

Iowa Department of Transportation

U.S. Department of Defense

Environmental Security Technology Certification Program

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3