Making Ecosystem Modeling Operational–A Novel Distributed Execution Framework to Systematically Explore Ecological Responses to Divergent Climate Trajectories

Author:

Steenbeek Jeroen1ORCID,Ortega Pablo2,Bernardello Raffaele2ORCID,Christensen Villy13ORCID,Coll Marta14ORCID,Exarchou Eleftheria2ORCID,Fuster‐Alonso Alba4ORCID,Heneghan Ryan5ORCID,Julià Melis Laura4ORCID,Pennino Maria Grazia6ORCID,Rivas David78ORCID,Keenlyside Noel79ORCID

Affiliation:

1. Ecopath International Initiative (EII) Research Association Barcelona Spain

2. Barcelona Supercomputing Center (BSC) Barcelona Spain

3. UBC Institute for the Oceans and Fisheries Vancouver BC Canada

4. Institute of Marine Science (ICM‐CSIC) Barcelona Spain

5. School of Mathematical Sciences Queensland University of Technology Brisbane QLD Australia

6. Instituto Español de Oceanografía Madrid Spain

7. Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research Bergen Norway

8. Departamento de Oceanografía Biológica Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) Ensenada Mexico

9. Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research Bergen Norway

Abstract

AbstractMarine Ecosystem Models (MEMs) are increasingly driven by Earth System Models (ESMs) to better understand marine ecosystem dynamics, and to analyze the effects of alternative management efforts for marine ecosystems under potential scenarios of climate change. However, policy and commercial activities typically occur on seasonal‐to‐decadal time scales, a time span widely used in the global climate modeling community but where the skill level assessments of MEMs are in their infancy. This is mostly due to technical hurdles that prevent the global MEM community from performing large ensemble simulations with which to undergo systematic skill assessments. Here, we developed a novel distributed execution framework constructed of low‐tech and freely available technologies to enable the systematic execution and analysis of linked ESM/MEM prediction ensembles. We apply this framework on the seasonal‐to‐decadal time scale, and assess how retrospective forecast uncertainty in an ensemble of initialized decadal ESM predictions affects a mechanistic and spatiotemporal explicit global trophodynamic MEM. Our results indicate that ESM internal variability has a relatively low impact on the MEM variability in comparison to the broad assumptions related to reconstructed fisheries. We also observe that the results are also sensitive to the ESM specificities. Our case study warrants further systematic explorations to disentangle the impacts of climate change, fisheries scenarios, MEM internal ecological hypotheses, and ESM variability. Most importantly, our case study demonstrates that a simple and free distributed execution framework has the potential to empower any modeling group with the fundamental capabilities to operationalize marine ecosystem modeling.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3