Climate Change Will Aggravate South Asian Cropland Exposure to Drought by the Middle of 21st Century

Author:

Mondal Sanjit Kumar12,Su Buda1,Huang Jinlong1,Zhai Jianqing3,Wang Guojie1ORCID,Kundzewicz Zbigniew W.4,Wang Yanjun1,Jiang Shan1,Jiang Han1,Zhou Jian1,Jiang Tong1ORCID

Affiliation:

1. Research Institute of Climatic and Environmental Governance Institute for Disaster Risk Management /School of Geographical Science Nanjing University of Information Science & Technology Nanjing China

2. Irreversible Climate Change Research Center Yonsei University Seoul South Korea

3. National Climate Center China Meteorological Administrations Beijing China

4. Department of Environmental Engineering and Mechanical Engineering Poznan University of Life Sciences Poznan Poland

Abstract

AbstractDrought has a paramount impact on global agriculture and food security. However, the study on future cropland areas that can incur drought is inadequate. This paper uses input parameters from 7 CMIP6 models for 7 future scenarios (SSP1‐1.9, SSP1‐2.6, SSP4‐3.4, SSP2‐4.5, SSP4‐6.0, SSP3‐7.0, and SSP5‐8.5) to measure South Asian cropland exposure to drought and its underlying factors. Some defined epochs such as 2021–2040 (near‐term), 2041–2060 (mid‐term), 2081–2100 (long‐term), and 1995–2014 (reference period) are designed to explore diverse outlooks of the change. The Standardized Precipitation Evapotranspiration Index and the Run theory methods are applied to detect drought. Results indicate an intensified cropland (under SSP4‐3.4, SSP3‐7.0, and SSP5‐8.5) in the Indo‐Gangetic Plain region of South Asia, where mostly the variation occurs among scenarios and periods. Notably, the future cropland exposed to drought will increase in the 2021–2040, and 2041–2060 periods, but it intends to decline during the 2081–2100. Relatively, the exposed cropland will upturn highest by 49.2% (SSP3‐7.0) in the mid‐term period and decrease by −8.2% (SSP5‐8.5) in the end future. Spatially, distributed cropland in the central, south‐west, and portion of the northeast of South Asia are subjective to be exposed largely, but it can drop greatly across the eastern part by the end future. Importantly, the climate change effect plays a grounding role in future exposure change over the region during the near to mid‐term periods, while the cropland change effect is predominant in the long‐term perspectives. However, these findings signify the urgency of policymaking focusing on drought mitigation to ensure food security.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Reference90 articles.

1. High-resolution near real-time drought monitoring in South Asia

2. Remote sensing of drought: Progress, challenges and opportunities

3. Allen R. G. Pereira L. S. Raes D. &Smith M.(1998).FAO irrigation and drainage paper no. 56 – Crop evapotranspiration (56).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3