The Future of Developed Barrier Systems: 2. Alongshore Complexities and Emergent Climate Change Dynamics

Author:

Anarde K. A.12ORCID,Moore L. J.1ORCID,Murray A. B.3ORCID,Reeves I. R. B.14ORCID

Affiliation:

1. Department of Earth, Marine and Environmental Sciences University of North Carolina at Chapel Hill Chapel Hill NC USA

2. Department of Civil, Construction, and Environmental Engineering North Carolina State University Raleigh NC USA

3. Division of Earth and Climate Sciences Nicholas School of the Environment Duke University Durham NC USA

4. Now at St. Petersburg Coastal and Marine Science Center U.S. Geological Survey St. Petersburg FL USA

Abstract

AbstractDeveloped barrier systems (barrier islands and spits) are lowering and narrowing with sea‐level rise (SLR) such that habitation will eventually become infeasible or prohibitively expensive for most communities in its current form. Before reaching this state, choices will be made to modify the natural and built environment to reduce relatively short‐term risk. These choices will likely vary substantially even along the same developed barrier system as these landscapes are rarely uniformly managed alongshore. Building on the results from a companion paper, here we use a new modeling framework to investigate the complexities in barrier system dynamics that emerge as a function of alongshore variability in management strategies, accelerations in SLR, and changes in storm intensity and frequency. Model results suggest that when connected through alongshore sediment transport, barriers with alongshore variable management strategies—here, the construction of dunes and wide beaches to protect either roadways or communities—evolve differently than they would in the absence of alongshore connections. Shoreline stabilization by communities in one location influences neighboring areas managed solely for roadways, inducing long‐term system‐wide lags in shoreline retreat. Conversely, when barrier segments managed for roadways are allowed to overwash, this induces shoreline curvature system‐wide, thus enhancing erosion on nearby stabilized segments. Feedbacks between dunes, storms, overwash flux, and alongshore sediment transport also affect outcomes of climate adaptation measures. In the case of partial, early abandonment of roadway management, we find that system‐wide transitions to less vulnerable landscape states are possible, even under accelerated SLR and increased storminess.

Funder

Division of Earth Sciences

Division of Environmental Biology

National Academies of Sciences, Engineering, and Medicine

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3