Affiliation:
1. Department of Earth, Marine and Environmental Sciences University of North Carolina at Chapel Hill Chapel Hill NC USA
2. Department of Civil, Construction, and Environmental Engineering North Carolina State University Raleigh NC USA
3. Division of Earth and Climate Sciences Nicholas School of the Environment Duke University Durham NC USA
4. Now at St. Petersburg Coastal and Marine Science Center U.S. Geological Survey St. Petersburg FL USA
Abstract
AbstractDeveloped barrier systems (barrier islands and spits) are lowering and narrowing with sea‐level rise (SLR) such that habitation will eventually become infeasible or prohibitively expensive for most communities in its current form. Before reaching this state, choices will be made to modify the natural and built environment to reduce relatively short‐term risk. These choices will likely vary substantially even along the same developed barrier system as these landscapes are rarely uniformly managed alongshore. Building on the results from a companion paper, here we use a new modeling framework to investigate the complexities in barrier system dynamics that emerge as a function of alongshore variability in management strategies, accelerations in SLR, and changes in storm intensity and frequency. Model results suggest that when connected through alongshore sediment transport, barriers with alongshore variable management strategies—here, the construction of dunes and wide beaches to protect either roadways or communities—evolve differently than they would in the absence of alongshore connections. Shoreline stabilization by communities in one location influences neighboring areas managed solely for roadways, inducing long‐term system‐wide lags in shoreline retreat. Conversely, when barrier segments managed for roadways are allowed to overwash, this induces shoreline curvature system‐wide, thus enhancing erosion on nearby stabilized segments. Feedbacks between dunes, storms, overwash flux, and alongshore sediment transport also affect outcomes of climate adaptation measures. In the case of partial, early abandonment of roadway management, we find that system‐wide transitions to less vulnerable landscape states are possible, even under accelerated SLR and increased storminess.
Funder
Division of Earth Sciences
Division of Environmental Biology
National Academies of Sciences, Engineering, and Medicine
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献