Affiliation:
1. George Mason University Fairfax VA USA
2. Princeton University Princeton NJ USA
3. Center for Ocean‐Land‐Atmosphere Studies George Mason University Fairfax VA USA
Abstract
AbstractEvaporation is controlled by soil moisture (SM) availability when conditions are not extremely wet. In such a moisture‐limited regime, land‐atmosphere coupling is active, and a chain of linked processes allow land surface anomalies to affect weather and climate. How frequently any location is in a moisture‐limited regime largely determines the intensity of land feedbacks on climate. Conventionally this has been quantified by shifting probability distributions of SM, but the boundary between moisture‐limited and energy‐limited regimes, called the critical soil moisture (CSM) value, can also change. CSM is an emergent property of the land‐atmosphere system, determined by the balance of radiative, thermal and kinetic energy factors. We propose a novel framework to separate the contributions of these separate effects on the likelihood that SM lies in the moisture‐limited regime. We confirm that global warming leads to a more moisture‐limited world. This is attributed to reduced SM in most regions: the moisture effect. CSM changes mainly due to shifts in the surface energy budget, significantly affecting 27.7% of the globe in analyzed climate change simulations. However, consistency among Earth system models regarding CSM change is low. The poor agreement hints that variability of CSM in models and the factors that determine CSM are not well represented. The fidelity of CSM in Earth system models has been overlooked as a factor in water cycle projections. Careful assessment of CSM in nature and for model development should be a priority, with potential benefits for multiple research fields including meteorology, hydrology, and ecology.
Funder
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献