Knowledge Gaps in Quantifying the Climate Change Response of Biological Storage of Carbon in the Ocean

Author:

Henson Stephanie1ORCID,Baker Chelsey A.1ORCID,Halloran Paul2ORCID,McQuatters‐Gollop Abigail3,Painter Stuart1ORCID,Planchat Alban4ORCID,Tagliabue Alessandro5ORCID

Affiliation:

1. National Oceanography Centre Southampton UK

2. Faculty of Environment, Science and Economy University of Exeter Exeter UK

3. School of Biological and Marine Science University of Plymouth Plymouth UK

4. LMD‐IPSL, CNRS, Ecole Normale Supérieure/PSL Res. University, Ecole Polytechnique, Sorbonne Université Paris France

5. School of Environmental Sciences University of Liverpool Liverpool UK

Abstract

AbstractThe ocean is responsible for taking up approximately 25% of anthropogenic CO2 emissions and stores >50 times more carbon than the atmosphere. Biological processes in the ocean play a key role, maintaining atmospheric CO2 levels approximately 200 ppm lower than they would otherwise be. The ocean's ability to take up and store CO2 is sensitive to climate change, however the key biological processes that contribute to ocean carbon storage are uncertain, as are how those processes will respond to, and feedback on, climate change. As a result, biogeochemical models vary widely in their representation of relevant processes, driving large uncertainties in the projections of future ocean carbon storage. This review identifies key biological processes that affect how ocean carbon storage may change in the future in three thematic areas: biological contributions to alkalinity, net primary production, and interior respiration. We undertook a review of the existing literature to identify processes with high importance in influencing the future biologically‐mediated storage of carbon in the ocean, and prioritized processes on the basis of both an expert assessment and a community survey. Highly ranked processes in both the expert assessment and survey were: for alkalinity—high level understanding of calcium carbonate production; for primary production—resource limitation of growth, zooplankton processes and phytoplankton loss processes; for respiration—microbial solubilization, particle characteristics and particle type. The analysis presented here is designed to support future field or laboratory experiments targeting new process understanding, and modeling efforts aimed at undertaking biogeochemical model development.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3