KNMI'23 Climate Scenarios for the Netherlands: Storyline Scenarios of Regional Climate Change

Author:

van der Wiel Karin1ORCID,Beersma Jules1,van den Brink Henk1,Krikken Folmer2,Selten Frank1ORCID,Severijns Camiel1,Sterl Andreas1ORCID,van Meijgaard Erik1,Reerink Thomas1,van Dorland Rob1

Affiliation:

1. Royal Netherlands Meteorological Institute (KNMI) De Bilt The Netherlands

2. Climateradar Randwijk The Netherlands

Abstract

AbstractThis paper presents the methodology for the construction of the KNMI'23 national climate scenarios for the Netherlands. We have developed six scenarios, that cover a substantial part of the uncertainty in CMIP6 projections of future climate change in the region. Different sources of uncertainty are disentangled as much as possible, partly by means of a storyline approach. Uncertainty in future emissions is covered by making scenarios conditional on different SSP scenarios (SSP1‐2.6, SSP2‐4.5, and SSP5‐8.5). For each SSP scenario and time horizon (2050, 2100, 2150), we determine a global warming level based on the median of the constrained estimates of climate sensitivity from IPCC AR6. The remaining climate model uncertainty of the regional climate response at these warming levels is covered by two storylines, which are designed with a focus on the annual and seasonal mean precipitation response (a dry‐trending and wet‐trending variant for each SSP). This choice was motivated by the importance of future water management to society. For users with specific interests we provide means how to account for the impact of the uncertainty in climate sensitivity. Since CMIP6 GCM data do not provide the required spatial detail for impact modeling, we reconstruct the CMIP6 responses by resampling internal variability in a GCM‐RCM initial‐condition ensemble. The resulting climate scenarios form a detailed storyline of plausible future climates in the Netherlands. The data can be used for impact calculations and assessments by stakeholders, and will be used to inform policy making in different sectors of Dutch society.

Publisher

American Geophysical Union (AGU)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3