Apparently Seasonal Variations of the Seawater Sr/Ca Ratio Across the Florida Keys Reef Tract

Author:

Khare Agraj12,Hughes Hunter P.13,Schijf Johan1ORCID,Kilbourne K. Halimeda1ORCID

Affiliation:

1. Chesapeake Biological Laboratory University of Maryland Center for Environmental Science Solomons MD USA

2. Closelook Info Technology Private Ltd. Bhopal India

3. Department of Earth, Marine and Environmental Sciences University of North Carolina at Chapel Hill Chapel Hill NC USA

Abstract

AbstractA 4‐year time‐series of surface seawater Sr/Ca ratios was assembled across a section of the Florida Keys Reef Tract, in order to uncover any variability that might explain previously reported anomalies in regional calibrations of the coral aragonite Sr/Ca paleotemperature proxy. Samples were collected semiannually on a grid of 54 sites, from September of 2016 until January of 2020. The 325‐km2 grid extended from the ocean shore to the forereef wall and from the east end of Long Key to the west end of Marathon. A novel ICP‐AES method was used to measure the Sr/Ca ratio, with ratio calibration and normalization against an in‐house seawater reference, yielding a long‐term precision of better than 0.2%. Significant variations (2%–3%) of the seawater Sr/Ca ratio were found. While it was relatively constant offshore, near the coast the ratio alternated seasonally between higher and lower values, generally resulting in seaward Sr/Ca gradients that were markedly negative in summer but reversed in winter. Inshore seawater Sr/Ca ratios ranged from a summer high of 8.83 mmol/mol to a winter low of 8.54 mmol/mol, the difference corresponding to a potential bias of ∼5.5°C in terms of the coral Sr/Ca paleotemperature proxy. This seasonal variation should diminish the slope of empirical Sr/Ca–SST calibration lines, as has indeed been observed in prior studies with local coral species. Open ocean samples obtained from the Atlantic, Indian, and Pacific enlarge the published Sr/Ca data set for surface seawater and show a much smaller variability of 8.646 ± 0.018 mmol/mol (0.2%).

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3