The Effect of the Garnet Content on Deformation Mechanisms and Weakening of Eclogite: Insights From Deformation Experiments and Numerical Simulations

Author:

Rogowitz Anna12ORCID,Thielmann Marcel3ORCID,Kraus Katrin1,Grasemann Bernhard1ORCID,Renner Jörg4

Affiliation:

1. Department of Geology University of Vienna Vienna Austria

2. Institute for Earth Sciences University of Graz Graz Austria

3. Bayerisches Geoinstitut University of Bayreuth Bayreuth Germany

4. Institute of Geology, Mineralogy, and Geophysics Ruhr‐Universität Bochum Bochum Germany

Abstract

AbstractWe performed deformation experiments on omphacite‐garnet aggregates at a temperature of 1000°C, a confining pressure of 2.5 GPa, and a strain rate of 3 × 10−6 s−1 and complemented them by numerical simulations to gain insight into the role of garnet fraction for the deformation behavior of dry eclogite, with a focus on strain weakening mechanisms. We determined the spatial and temporal evolution of strain and strain rate by basing numerical simulations on experimentally derived microstructures, and thereby identified characteristic deformation mechanisms. Pure omphacite and garnet aggregates deform by two different mechanisms. Internally strained clasts and low‐angle grain boundaries indicate crystal plasticity for omphacitite; the fracture dominated fabric of garnetite documents brittle deformation. Electron channeling contrast imaging, however, revealed low‐angle grain boundaries and free dislocations in garnet crystals, suggesting that minor crystal plasticity accompanies the brittle failure. Eclogitic aggregates show varying deformation behavior between the two end‐members shifting from crystal plastic toward brittle deformation with increasing garnet content. All samples exhibit strain weakening. The intensity of weakening shows a positive correlation with the garnet content. Our combined experimental, numerical, and microstructural investigations suggest that the majority of strain weakening is associated with crystal plastic processes in omphacite. Numerical simulations and experiments show that a garnet content above 25% enhances the activity of crystal plastic processes in omphacite and results in strain localization, which subsequently weakens the eclogite.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3