Burial and Denudation Alter Microbial Life at the Bottom of the Hypo‐Critical Zone

Author:

McIntosh Jennifer1ORCID,Kim Ji‐Hyun12ORCID,Bailey Lydia3ORCID,Osburn Magdalena4,Drake Henrik5ORCID,Martini Anna6,Reiners Peter3ORCID,Stevenson Bradley4,Ferguson Grant17ORCID

Affiliation:

1. Department of Hydrology and Atmospheric Sciences University of Arizona AZ Tucson USA

2. Department of Geoscience University of Calgary AB Calgary Canada

3. Department of Geosciences University of Arizona AZ Tucson USA

4. Department of Earth and Planetary Sciences Northwestern University IL Evanston USA

5. Department of Biology and Environmental Science Linnaeus University Kalmar Sweden

6. Department of Geology Amherst College MA Amherst USA

7. Department of Civil, Environmental and Geological Engineering University of Saskatchewan SK Saskatoon Canada

Abstract

AbstractHow subsurface microbial life changed at the bottom of the kilometers‐deep (hypo) Critical Zone in response to evolving surface conditions over geologic time is an open question. This study investigates the burial and exhumation, biodegradation, and fluid circulation history of hydrocarbon reservoirs across the Colorado Plateau as a window into the hypo‐Critical Zone. Hydrocarbon reservoirs, in the Paradox and Uinta basins, were deeply buried starting ca. 100 to 60 Ma, reaching temperatures >80–140°C, likely sterilizing microbial communities present since the deposition of sediments. High salinities associated with evaporites may have further limited microbial activity. Upward migration of hydrocarbons from shale source rocks into shallower reservoirs during maximum burial set the stage for microbial re‐introduction by creating organic‐rich “hot spots.” Denudation related to the incision of the Colorado River over the past few million years brought reservoirs closer to the surface under cooler temperatures, enhanced deep meteoric water circulation and flushing of saline fluids, and likely re‐inoculated more permeable sediments up to several km depth. Modern‐ to paleo‐hydrocarbon reservoirs show molecular and isotopic evidence of anaerobic oxidation of hydrocarbons coupled to bacterial sulfate reduction in areas with relatively high SO4‐fluxes. Anaerobic oil biodegradation rates are high enough to explain the removal of at least some portion of postulated “supergiant oil fields” across the Colorado Plateau by microbial activity over the past several million years. Results from this study help constrain the lower limits of the hypo‐Critical Zone and how it evolved over geologic time, in response to changing geologic, hydrologic, and biologic forcings.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3