Variations in Volcanism and Tectonics Along the Hotspot‐Influenced Reykjanes Ridge

Author:

Le Saout M.1ORCID,Pałgan D.2ORCID,Devey C. W.1ORCID,Lux T. S.1,Petersen S.1,Thorhallsson D.3,Tomkowicz A.2,Brix S.4

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany

2. Institute of Oceanography University of Gdańsk Gdańsk Poland

3. Hawai'i Institute of Geophysics and Planetology Honolulu HI USA

4. Senckenberg am Meer German Centre for Marine Biodiversity Research (DZMB) c/o Biocenter Grindel Hamburg Germany

Abstract

AbstractMapping and sampling four sections of the slow‐spreading Reykjanes Ridge provide insight into how tectonic and volcanic activity varies with distance from the Iceland plume. The studied areas are characterized by significant variations in water depth, lava chemistry, crustal thickness, thermal structure, and ridge morphology. For each study area, fault pattern and dimension, tectonic strain, seamount morphology, and density are inferred from 15 m‐resolution bathymetry. These observations are combined with geochemical analysis from glass samples and sediment thickness estimations along Remotely Operated Vehicle‐dive videos. They reveal that (a) tectonic and volcanic activity along the Reykjanes Ridge, do not systematically vary with distance from the plume center. (b) The tectonic geometry appears directly related to the deepening of the brittle/ductile transition and the maximum change in tectonic strain related to the rapid change in crustal thickness and the transition between axial‐high and axial valley (∼59.5°N). (c) Across‐axis variations in the fault density and sediment thickness provide similar widths for the neo‐volcanic zone except in regions of increased seamount emplacement. (d) The variations in seamount density (especially strong for flat‐topped seamounts) are not related to the distance from the plume but appear to be correlated with the interaction between the V‐shape ridges (VSR) flanking the ridge and the ridge axis. These observations are more compatible with the buoyant upwelling melting instability hypothesis for VSR formation and suggest that buoyant melting instabilities create many small magma batches which by‐pass the normal subaxial magmatic plumbing system, erupting over a wider‐than‐normal area.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3