Extension Dynamics of the Northern Fonualei Rift and Spreading Center and the Southern Mangatolu Triple Junction in the Lau Basin at 16°S

Author:

Jegen A.1ORCID,Dannowski A.1ORCID,Schnabel M.2ORCID,Barckhausen U.2ORCID,Brandl P. A.1ORCID,Riedel M.1ORCID,Beniest A.3ORCID,Heyde I.2ORCID,Hannington M. D.14,Sandhu A.1,Werner R.1,Kopp H.15ORCID

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel Germany

2. BGR Federal Institute for Geosciences and Natural Resources Hanover Germany

3. Vrije Universiteit Amsterdam Amsterdam The Netherlands

4. Department of Earth and Environmental Sciences University of Ottawa Ottawa ON Canada

5. Department of Geosciences CAU Kiel University Kiel Germany

Abstract

AbstractDue to the complexity of 2D magnetic anomaly maps north of 18°S and the sparsity of seismic data, the tectonic evolution of the northern Lau Basin has not yet been unraveled. We use a multi‐method approach to reconstruct the formation of the basin at ∼16°S by compiling seismic, magnetic, gravimetric and geochemical data along a 185 km‐long crustal transect. We identified a crustal zonation which preserves the level of subduction input at the time of the crust's formation. Paired with the seafloor magnetization, the crustal zonation enabled us to qualitatively approximate the dynamic spreading history of the region. Further assessment of the recent tectonic activity and the degree of tectonic overprinting visible in the crust both suggest a complex tectonic history including a dynamically moving spreading center and the reorganizing of the local magma supply. Comparing the compiled data sets has revealed substantial differences in the opening mechanisms of the two arms of the Overlapping Spreading Center (OSC) that is made up by the northernmost tip of the Fonualei Rift and Spreading Center in the east and the southernmost segment of the Mangatolu Triple Junction in the west. The observed transition from a predominantly tectonic opening mechanism at the eastern OSC arm to a magmatic opening mechanism at the western OSC arm coincides with an equally sharp transition from and strongly subduction influenced crust to a crust with virtually no subduction input. The degree of subduction input alters the geochemical composition, as well as the lithospheric stress response.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3