Authigenic Carbonate Precipitation at Yam Seep Controlled by Continuous Fracturing and Uplifting of Four‐Way Closure Ridge Offshore SW Taiwan

Author:

Tseng Yiting1ORCID,Smrzka Daniel1ORCID,Lin Saulwood2ORCID,Schröder‐Ritzrau Andrea3ORCID,Frank Norbert3ORCID,Bohrmann Gerhard1ORCID

Affiliation:

1. MARUM Center of Environmental Sciences, and Department of Geosciences University of Bremen Bremen Germany

2. Institute of Oceanography National Taiwan University Taipei Taiwan

3. Institute of Environmental Physics Ruprecht Karl University of Heidelberg Heidelberg Germany

Abstract

AbstractHydrocarbon seeps are common manifestations of gas leakage from the seafloor. However, the fate of methane seepage within the gas hydrate stability zone at active margins is poorly constrained. This study presents a 40‐thousand‐year record of hydrocarbon seepage archived by a ∼5‐m long core composed of authigenic carbonate from the Yam Seep area, Four‐Way Closure Ridge off SW Taiwan. Different carbonate microfacies could be distinguished: Consolidated microcrystalline aragonite representing lithified host sediments intercalated by pure aragonite present in 10–50 cm thick intervals in the core. These aragonite intervals are interpreted as having precipitated within former fractures in the host rock. High resolution U‐Th dating of these aragonites is interpreted to record the minimum age of the opening of these fractures. The chronology of aragonite precipitation throughout the core suggests a record of continuous seepage from ∼41 to 2 ka that fluctuated in intensity over this time period. The chronology of putative fracturing events and observed carbonate precipitation suggest (a) an active period of fracturing and seepage from ∼37 to 27 ka, (b) a more quiescent period from ∼27 to 16 ka, followed by (c) another active period from ∼16 to 12 ka. A schematic model illustrates the evolution of carbonate formation within the core influenced by faulting, fracturing, erosion, gas hydrate accumulation, and aragonite precipitation and provides a unique 40,000‐year‐old record of methane seepage and crucial insights into the dynamics of long‐term seepage systems at active margins.

Funder

Ministry of Science and Technology, Taiwan

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3