Diverse Origins of Gases From Mud Volcanoes and Seeps in Tectonically Fragmented Terrane

Author:

Lin Yueh‐Ting1,Rumble Douglas2,Young Edward D.3,Labidi Jabrane34ORCID,Tu Tzu‐Hsuan15ORCID,Chen Jhen‐Nien1ORCID,Pape Thomas6ORCID,Bohrmann Gerhard6ORCID,Lin Saulwood7,Lin Li‐Hung18ORCID,Wang Pei‐Ling78

Affiliation:

1. Department of Geosciences National Taiwan University New Taipei Taiwan

2. Geophysical Laboratory Carnegie Institution for Science Washington DC USA

3. Department of Earth, Planetary and Space Sciences University of California, Los Angeles Los Angeles CA USA

4. Université de Paris Cité Institut de Physique du Globe de Paris CNRS Paris France

5. Department of Oceanography National Sun Yat‐Sen University Kaohsiung City Taiwan

6. MARUM – Center for Marine Environmental Sciences and Faculty of Geosciences University of Bremen Bremen Germany

7. Institute of Oceanography National Taiwan University New Taipei Taiwan

8. Research Center for Future Earth National Taiwan University New Taipei Taiwan

Abstract

AbstractIdentification of methane origins remains a challenging work as current diagnostic signals are often not sufficient to resolve individual formation and post‐formation processes. To address such a knowledge gap in a tectonically active and fragmented terrain, samples from mud volcanoes, gas seeps, and springs distributed along structural features onshore and offshore of Taiwan were analyzed for their isotopic compositions of methane, nitrogen, helium, dissolved inorganic carbon, CO2, and water. Our analyses yielded Δ13CH3D and Δ12CH2D2 values ranging between +1.9‰ and +7.8‰ and between +3.0‰ and +19.9‰, respectively. A portion of the samples were characterized by values that represent the thermodynamic equilibrium at temperatures of 99°–260°C. These temperature estimates, together with the bulk isotopic compositions and local geothermal gradients (25°–30°C/km), suggest that methane was formed by thermal maturation of organic matter at depths of 2–9 km below the land surface and channeled upward along faults. Other samples were found to deviate from equilibrium by varying degrees. Considering the geological background, helium isotopic ratios, and nitrogen isotopologue compositions, and methanogens detected at some sites, these gases are either abiotic in origin or a mixture of microbial and thermogenic sources. Regardless of whether the equilibrium of methane isotopologues was reached, few sites hosted by sedimentary formations were characterized by mantle‐like helium signatures, indicating decoupled origins and potential degassing of helium from the relic igneous source. Overall, these results suggest the extraction of methane and other gases from multiple depths from strata fragmented by fault displacement in an active orogenic belt.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3