Origin of 182W Anomalies in Ocean Island Basalts

Author:

Archer Gregory J.1ORCID,Budde Gerrit12ORCID,Worsham Emily A.13,Stracke Andreas4ORCID,Jackson Matthew G.5ORCID,Kleine Thorsten16

Affiliation:

1. Institut für Planetologie University of Münster Münster Germany

2. Department of Earth, Environmental and Planetary Sciences Brown University Providence RI USA

3. Nuclear and Chemical Sciences Division Lawrence Livermore National Laboratory Livermore CA USA

4. Institut für Mineralogie University of Münster Münster Germany

5. Department of Earth Science University of California Santa Barbara Santa Barbara CA USA

6. Max Planck Institute for Solar System Research Göttingen Germany

Abstract

AbstractOcean island basalts (OIB) show variable 182W deficits that have been attributed to either early differentiation of the mantle or core‐mantle interaction. However, 182W variations may also reflect nucleosynthetic isotope heterogeneity inherited from Earth's building material, which would be evident from correlated 182W and 183W anomalies. Some datasets for OIB indeed show hints for such correlated variations, meaning that a nucleosynthetic origin of W isotope anomalies in OIB cannot be excluded. We report high‐precision W isotope data for OIB from Samoa and Hawaii, which confirm previously reported 182W deficits for these samples, but also demonstrate that none of these samples have resolvable 183W anomalies. These data therefore rule out a nucleosynthetic origin of the 182W deficits in OIB, which most likely reflect the entrainment of either core material or an overabundance of late‐accreted materials within OIB mantle sources. If these processes occurred over Earth's history, they may have also been responsible for shifting the 182W composition of the bulk mantle to its modern‐day value. We also report Mo isotope data for some Hawaiian OIB, which reveal no resolved nucleosynthetic Mo isotopic anomalies. This is consistent with inheritance of 182W deficits in OIB from the addition of either core or late‐accreted material, but only if these materials have a non‐carbonaceous (NC) meteorite‐like heritage. As such, these data rule out significant contributions of carbonaceous chondrite (CC)‐like materials to either Earth's core or late accretion.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3