Affiliation:
1. ISTeP UMR 7193 CNRS Sorbonne Université Paris France
2. LGL‐TPE UMR5276 CNRS Université Jean Monnet Saint‐Etienne France
3. BRGM Orléans France
4. IRD UGE ISTerre CNRS Université Grenoble Alpes Université Savoie Mont Blanc Grenoble France
Abstract
AbstractRecent geophysical campaigns in the Alps produce images with seismic property variations along the slab of sufficiently fine resolution to be interpreted as rock transformations. Since the reacting European lower crust is presumed responsible for the variations of velocities at the top of the Alpine slab, we sampled local analogs of the lower crustal lithologies in the field and modeled the evolution of equilibrium seismic properties during burial, along possible pressure‐temperature paths for the crustal portion of the slab. The results are then compared to the range of the S‐wave velocities obtained from the S‐wave velocity tomography model along the CIFALPS transect. The velocity increase from 25 to 45 km within the slab, in the tomographic model is best reproduced by the transformation of specific lithologies in the high‐pressure granulite facies along a collisional gradient (30°C/km). Although the crust is certainly not completely homogeneous, the best candidates for the rocks that make up the top of the Alpine dip crustal panel are a kinzigite from Monte San Petrone, a gneiss from the Insubric line, and blueschist mylonite from Canavese. While they may not represent the entirety of the crust, they are sufficient to explain the tomographic velocity of the Alpine slab. A lateral lithological contrast inherited from the Variscan orogeny is not required. Eclogitization, suggested as the first‐order transformation in convergence zones, could be a second‐order transformation in collisional wedges. These results also imply a partially re‐equilibrated thermal gradient, consistent with the Alpine thermal state data at depth.
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献