What Are the Most Effective Proxies in Identifying Storm‐Surge Deposits in Paleotempestology? A Quantitative Evaluation From the Sand‐Limited, Peat‐Dominated Environment of the Florida Coastal Everglades

Author:

Yao Qiang1ORCID,Liu Kam‐biu1ORCID,Zhang Zhenqing2ORCID,Rodrigues Erika3ORCID,Cohen Marcelo13ORCID,Maiti Kanchan1ORCID,Yang Yang45ORCID

Affiliation:

1. Department of Oceanography and Coastal Sciences College of the Coast and Environment Louisiana State University Baton Rouge LA USA

2. School of Geographic and Environmental Sciences Tianjin Normal University Tianjin China

3. Graduate Program of Geology and Geochemistry Federal University of Pará Belém Brazil

4. School of Geography and Ocean Science Ministry of Education Key Laboratory for Coast and Island Development Nanjing University Nanjing China

5. School of Marine Science and Engineering Nanjing Normal University Nanjing China

Abstract

AbstractAlthough many studies have attempted to reconstruct millennial‐scale hurricane patterns using various proxy‐based methods, it is still unclear what the most effective proxies are to identify storm surge deposits in different environmental settings. This study quantitatively compares the application of grain‐size, loss‐on‐ignition, stable isotopes, X‐ray fluorescence, and palynological proxies in paleotempestology from an organic‐rich environment in the Florida Everglades. The nonparametric tests indicate that only 9 among the 27 parameters (mean diameter, %water, %organic, %carbonate, Ca, Sr, Ca/Ti, Cl/Br, and marine microfossils) exhibited significant differences between storm‐surge and in situ deposits. The principal component analysis shows that five marine indicators (Sr, Ca, Ca/Ti, %Carbonate, and Marine microfossils) have the closest association with the allochthonous samples, while Cl/Br and Mz are the most sensitive proxies in low‐ and high‐energy environments, respectively. Moreover, organic geochemical proxies (e.g., δ13C and δ15N of bulk sedimentary organic matter) are ineffective for identifying storm‐surge deposits in organic‐rich mangrove environments.

Funder

National Science Foundation

State Key Laboratory of Marine Geology

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3