Are We Recording? Putting Embayment Speedometry to the Test Using High Pressure‐Temperature Decompression Experiments

Author:

Hosseini Behnaz1ORCID,Myers Madison L.1ORCID,Watkins James M.2ORCID,Harris Megan A.1ORCID

Affiliation:

1. Department of Earth Sciences Montana State University Bozeman MT USA

2. Department of Earth Sciences University of Oregon Eugene OR USA

Abstract

AbstractDespite its increasing application to estimate magma decompression rates for explosive eruptions, the embayment speedometer has long awaited critical experimental evaluation. We present the first experimental results on the fidelity of natural quartz‐hosted embayments in rhyolitic systems as recorders of magma decompression. We conducted two high pressure‐temperature isobaric equilibrium experiments and 13 constant‐rate, continuous isothermal decompression experiments in a cold‐seal pressure vessel where we imposed rates from 0.005 to 0.05 MPa s−1 in both H2O‐saturated and mixed‐volatile (H2O + CO2)‐saturated systems. In both equilibrium experiments, we successfully re‐equilibrated embayment melt to new fluid compositions at 780°C and 150 MPa, confirming the ability of embayments to respond to and record changing environmental conditions. Of the 32 glassy embayments recovered, seven met the criteria previously established for successful geospeedometry and were thus analyzed for their volatile (H2O ± CO2) concentrations, with each producing a good model fit and recovering close to the imposed decompression rate. In one H2O‐saturated experiment, modeling H2O concentration gradients in embayments from three separate crystals resulted in best‐fit decompression rates ranging from 0.012 to 0.021 MPa s−1, in close agreement with the imposed rate (0.015 MPa s−1) and attesting to the reproducibility of the technique. For mixed‐volatile experiments, we found that a slightly variable starting fluid composition (2.4–3.5 wt.% H2O at 150 MPa) resulted in good fits to both H2O + CO2 profiles. Overall our experiments provide confidence that the embayment is a robust recorder of constant‐rate, continuous decompression, with the model successfully extracting experimental conditions from profiles representing nearly an order of magnitude variation (0.008–0.05 MPa s−1) in decompression rate.

Funder

National Science Foundation

Mineralogical Society of America

Geological Society of America

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3