Microscale Petrographic, Trace Element, and Isotopic Constraints on Glauconite Diagenesis in Altered Sedimentary Sequences: Implications for Glauconite Geochronology

Author:

Rafiei M.1ORCID,Lӧhr S. C.12ORCID,Alard O.1ORCID,Baldermann A.3ORCID,Farkaš J.2,Brock G. A.1

Affiliation:

1. School of Natural Sciences Macquarie University Sydney NSW Australia

2. Department of Earth Sciences Metal Isotope Group (MIG) University of Adelaide Adelaide SA Australia

3. Institute of Applied Geoscience NAWI Graz Geocenter Graz University of Technology Graz Austria

Abstract

AbstractGlauconite is an authigenic clay mineral that is common in marine sedimentary successions. Dating of glauconite to determine the depositional age of sedimentary sequences has a long history but has fallen into disfavor due to the difficulty of obtaining “pure” glauconite separates. Recent advances in sedimentary petrography and reaction cell mass spectrometry permit rapid in situ Rb‐Sr dating of carefully screened glauconite grains. However, glauconite remains susceptible to burial alteration so that successful application of in situ Rb‐Sr glauconite geochronology requires improved, microscale constraints on the impact of postdepositional alteration on glauconite Rb‐Sr systematics and articulation of robust criteria for identifying grains suitable for geochronology. Here, we address these questions by combining SEM‐EDS mineral mapping, geochemical characterization, and in situ Rb‐Sr dating of glauconite grains in partially altered lower Cambrian sedimentary sequences from the Arrowie and Amadeus basins in Australia. Our approach provides information at high spatial resolution, representing new insights into the interplay between source material, burial fluids, and diagenetic processes. Among the different glauconite classes, which we classify based on alteration and inclusion type, only the primary apatite‐bearing “pristine” glauconite returns an age within the error of the expected stratigraphic age. We attribute the preservation of a depositional Rb‐Sr age to the influence of Sr‐rich, alteration‐resistant apatite and the limited permeability of the clay‐rich strata hosting these grains. We conclude that our combined petrographic–geochemical screening approach holds considerable potential for identifying the best preserved glauconite grains for in situ Rb‐Sr geochronology.

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3