Depth of Magma Storage Under Iceland Controlled by Magma Fluxes

Author:

Baxter R. J. M.12ORCID,Maclennan J.1ORCID,Neave D. A.3ORCID,Thordarson T.4ORCID

Affiliation:

1. Department of Earth Sciences University of Cambridge Cambridge UK

2. Department of Geology University of Otago Dunedin New Zealand

3. Department of Earth and Environmental Sciences The University of Manchester Manchester UK

4. Faculty of Earth Sciences University of Iceland Reykjavik Iceland

Abstract

AbstractThe compositions of volcanic materials are sensitive to physical conditions in the underlying magmatic system. When basaltic melts are saturated in olivine‐plagioclase‐augite prior to eruption, their compositions can be used to estimate the pressure at which they last equilibrated. We developed PyOPAM, an open‐source tool that runs in Python, and use this refreshed liquid‐barometer to investigate the relationship between final depths of magma storage and magma flux. We first tested PyOPAM using 312 experimental glasses compiled from literature and found that the 1σ uncertainty is 1.13 kbar (±3 km). PyOPAM was then applied to a data set of 13,400 analyses from Iceland, where suspected controls on magma flux are well constrained. Of these, 3807 analyses return robust pressure estimates, constraining final pre‐eruptive magma storage depths for 23 of the 30 Icelandic volcanic systems. Our results indicate that magma storage pressures on Iceland are linked to melt‐flux from the mantle. This finding is consistent with previous models linking storage depths and spreading rates on the global mid‐ocean ridge system. In addition, we provide clear evidence that the magma flux, rather than spreading rate alone, is the key control on the distribution of melt at spreading centers. Increased melt flux is associated with shoaling of pre‐eruptive storage depths, indicating that mantle melt fluxes dictate the long‐term stabilization of extensive magmatic storage regions at depths shallower than 10 km. Quantitative relationships between mantle melt flux and storage depths can be used to test computational models of transcrustal magmatic systems.

Funder

Trinity College, University of Cambridge

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3