Affiliation:
1. Department of Earth Sciences University of Cambridge Cambridge UK
2. Department of Geology University of Otago Dunedin New Zealand
3. Department of Earth and Environmental Sciences The University of Manchester Manchester UK
4. Faculty of Earth Sciences University of Iceland Reykjavik Iceland
Abstract
AbstractThe compositions of volcanic materials are sensitive to physical conditions in the underlying magmatic system. When basaltic melts are saturated in olivine‐plagioclase‐augite prior to eruption, their compositions can be used to estimate the pressure at which they last equilibrated. We developed PyOPAM, an open‐source tool that runs in Python, and use this refreshed liquid‐barometer to investigate the relationship between final depths of magma storage and magma flux. We first tested PyOPAM using 312 experimental glasses compiled from literature and found that the 1σ uncertainty is 1.13 kbar (±3 km). PyOPAM was then applied to a data set of 13,400 analyses from Iceland, where suspected controls on magma flux are well constrained. Of these, 3807 analyses return robust pressure estimates, constraining final pre‐eruptive magma storage depths for 23 of the 30 Icelandic volcanic systems. Our results indicate that magma storage pressures on Iceland are linked to melt‐flux from the mantle. This finding is consistent with previous models linking storage depths and spreading rates on the global mid‐ocean ridge system. In addition, we provide clear evidence that the magma flux, rather than spreading rate alone, is the key control on the distribution of melt at spreading centers. Increased melt flux is associated with shoaling of pre‐eruptive storage depths, indicating that mantle melt fluxes dictate the long‐term stabilization of extensive magmatic storage regions at depths shallower than 10 km. Quantitative relationships between mantle melt flux and storage depths can be used to test computational models of transcrustal magmatic systems.
Funder
Trinity College, University of Cambridge
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献