Impact of the Core Deformation on the Tidal Heating and Flow in Enceladus' Subsurface Ocean

Author:

Aygün Burak1ORCID,Čadek Ondřej1ORCID

Affiliation:

1. Department of Geophysics Faculty of Mathematics and Physics Charles University Prague Czech Republic

Abstract

AbstractWe present a novel approach to modeling the tidal response of icy moons with subsurface oceans. The problem is solved in the time domain and the flow in the ocean is calculated simultaneously with the deformation of the core and the ice shell. To simplify the calculations, we assume that the internal density interfaces are spherical and the effective viscosity of water is equal to or greater than 100 Pa s. The method is used to study the effect of an unconsolidated core on tidal dissipation in Enceladus' ocean. We show that the partitioning of tidal heating between the core and the ocean strongly depends on the thickness of the ocean layer. If the ocean thickness is significantly greater than 1 km, heat production is dominated by tidal dissipation in the core and the amount of heat produced in the ocean is negligible. In contrast, when the ocean thickness is less than about 1 km, tidal heating in the core diminishes and dissipation in the ocean increases, leaving the total heat production unchanged. Extrapolation of our results to realistic conditions indicates that tidal flow is turbulent which suggests that the linearized Navier‐Stokes equation may not be appropriate for modeling the tidal response of icy moons. Finally, we compare our results with those obtained by solving the Laplace tidal equations and discuss the limitations of the two‐dimensional models of ocean circulation.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3