Four Decades of Trends and Drivers of Global Surface Ocean Acidification

Author:

Ma Danling1ORCID,Gregor Luke1,Gruber Nicolas1ORCID

Affiliation:

1. Environmental Physics Institute of Biogeochemistry and Pollutant Dynamics ETH Zurich Zürich Switzerland

Abstract

AbstractThe oceans are acidifying in response to the oceanic uptake of anthropogenic carbon dioxide (CO2) from the atmosphere, yet the global‐scale progression of this acidification has been poorly documented so far by observations. Here, we fill this gap and use an updated version of the in situ and satellite observation‐based product OceanSODA‐ETHZ to determine the trends and drivers of the surface ocean aragonite saturation state (Ωar) and pH = –log([H+]) (total scale) over the last four decades (1982–2021). In the global mean, Ωar and pH declined at rates of −0.071 ± 0.006 decade−1 and −0.0166 ± 0.0010 decade−1, respectively, with the errors of the trends largely reflecting the uncertainties in the reconstructed pH and Ωar fields. These global mean trends are driven primarily by the increase in surface ocean concentration of dissolved inorganic carbon (DIC) in response to the uptake of anthropogenic CO2, but moderated by changes in natural DIC. Surface warming enhances the decrease in pH, accounting for ∼15% of the global trend. The long‐term trends vary substantially across regions and also differ distinctly between pH and Ωar. The highest trends in pH are found in the high latitudes, while Ωar decreases the fastest in the low latitudes. These regional differences are primarily a consequence of regional differences in the ability of the surface ocean to take up and buffer the anthropogenic CO2. Substantial El Niño‐driven interannual variability is superimposed on these trends, with Ωar showing greater variability than pH, resulting in substantially longer time of emergence for Ωar.

Funder

European Space Agency

Horizon 2020 Framework Programme

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3