The Importance of Hyperspectral Soil Albedo Information for Improving Earth System Model Projections

Author:

Braghiere R. K.12ORCID,Wang Y.1ORCID,Gagné‐Landmann A.1,Brodrick P. G.2ORCID,Bloom A. A.2ORCID,Norton A. J.2ORCID,Ma S.23ORCID,Levine P.2ORCID,Longo M.4,Deck K.1,Gentine P.5ORCID,Worden J. R.2ORCID,Frankenberg C.12ORCID,Schneider T.12ORCID

Affiliation:

1. California Institute of Technology Pasadena CA USA

2. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

3. Joint Institute for Regional Earth System Science and Engineering University of California at Los Angeles Los Angeles CA USA

4. Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA

5. Department of Earth of Environmental Engineering Columbia University New York NY USA

Abstract

AbstractEarth system models (ESMs) typically simplify the representation of land surface spectral albedo to two values, which correspond to the photosynthetically active radiation (PAR, 400–700 nm) and the near infrared (NIR, 700–2,500 nm) spectral bands. However, the availability of hyperspectral observations now allows for a more direct retrieval of ecological parameters and reduction of uncertainty in surface reflectance. To investigate sensitivity and quantify biases of incorporating hyperspectral albedo information into ESMs, we examine how shortwave soil albedo affects surface radiative forcing and simulations of the carbon and water cycles. Results reveal that the use of two broadband values to represent soil albedo can introduce systematic radiative‐forcing differences compared to a hyperspectral representation. Specifically, we estimate soil albedo biases of ±0.2 over desert areas, which can result in spectrally integrated radiative forcing divergences of up to 30 W m−2, primarily due to discrepancies in the blue (404–504 nm) and far‐red (702–747 nm) regions. Furthermore, coupled land‐atmosphere simulations indicate a significant difference in net solar flux at the top of the atmosphere (>3.3 W m−2), which can impact global energy fluxes, rainfall, temperature, and photosynthesis. Finally, simulations show that considering the hyperspectrally resolved soil reflectance leads to increased maximum daily temperatures under current and future CO2 concentrations.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3