Comparing Field, Probabilistic, and 2D Numerical Approaches to Assess Gravel Mobility in a Gravel‐Bed River

Author:

Arnaud F.12ORCID,Paquier A.23ORCID,Vázquez‐Tarrío D.4ORCID,Camenen B.23ORCID,Le Coz J.23ORCID,Michel K.12,Naudet G.23,Pella H.23,Piégay H.12ORCID

Affiliation:

1. UMR 5600 EVS CNRS/University of Lyon/ENS de Lyon Lyon Cedex 07 France

2. LTSER CNRS/Zone Atelier Bassin du Rhône/GRAIE Villeurbanne France

3. INRAE UR RiverLy Villeurbanne France

4. Universidad Complutense de Madrid/Departamento de Geodinámica Estratigrafía y Paleontología/C. de José Antonio Novais Madrid Spain

Abstract

AbstractSediment transport is a key process that affects the morphology and ecological habitat diversity of rivers. As part of a gravel augmentation program to mitigate sediment deficit below a dam, gravel mobility in the Ain River in Eastern France was investigated by tracking of a large amount (n = 1,063) of PIT‐tagged gravels in the field, conducting a probabilistic approach based on published tracer studies, and performing two‐dimensional (2D) numerical modeling of flow and bedload transport. This comparative study highlights the strengths, weaknesses, and complementary aspects of the three approaches to the understanding of river gravel mobility. Thanks to recent technological improvements, PIT‐tagged gravels provide an increasingly reliable and accurate representation of bedload movement in the field, although it remains limited in spatio‐temporal resolution. Based on an exponential distribution, the probabilistic approach correctly reproduces the average trend in travel distances by the different classes of particles over hydrological periods, including one or several significant floods. Furthermore, the 2D numerical modeling accounts for the variability of local hydrodynamic conditions and can simulate realistic displacement distributions for the different classes of particles with high spatio‐temporal resolution. Numerical modeling is a very encouraging approach, which makes our study original because it is the first time that the estimation of mean travel distances, the application of an exponential distribution, and the comparison with a hydrodynamic model are combined. A more effective modeling strategy involves incorporating a probabilistic transport model in the 2D numerical model to reproduce the observed scatter of the individual particle trajectories.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3