Affiliation:
1. UMR 5600 EVS CNRS/University of Lyon/ENS de Lyon Lyon Cedex 07 France
2. LTSER CNRS/Zone Atelier Bassin du Rhône/GRAIE Villeurbanne France
3. INRAE UR RiverLy Villeurbanne France
4. Universidad Complutense de Madrid/Departamento de Geodinámica Estratigrafía y Paleontología/C. de José Antonio Novais Madrid Spain
Abstract
AbstractSediment transport is a key process that affects the morphology and ecological habitat diversity of rivers. As part of a gravel augmentation program to mitigate sediment deficit below a dam, gravel mobility in the Ain River in Eastern France was investigated by tracking of a large amount (n = 1,063) of PIT‐tagged gravels in the field, conducting a probabilistic approach based on published tracer studies, and performing two‐dimensional (2D) numerical modeling of flow and bedload transport. This comparative study highlights the strengths, weaknesses, and complementary aspects of the three approaches to the understanding of river gravel mobility. Thanks to recent technological improvements, PIT‐tagged gravels provide an increasingly reliable and accurate representation of bedload movement in the field, although it remains limited in spatio‐temporal resolution. Based on an exponential distribution, the probabilistic approach correctly reproduces the average trend in travel distances by the different classes of particles over hydrological periods, including one or several significant floods. Furthermore, the 2D numerical modeling accounts for the variability of local hydrodynamic conditions and can simulate realistic displacement distributions for the different classes of particles with high spatio‐temporal resolution. Numerical modeling is a very encouraging approach, which makes our study original because it is the first time that the estimation of mean travel distances, the application of an exponential distribution, and the comparison with a hydrodynamic model are combined. A more effective modeling strategy involves incorporating a probabilistic transport model in the 2D numerical model to reproduce the observed scatter of the individual particle trajectories.
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献