Physics‐Informed Neural Networks of the Saint‐Venant Equations for Downscaling a Large‐Scale River Model

Author:

Feng Dongyu1ORCID,Tan Zeli1ORCID,He QiZhi2ORCID

Affiliation:

1. Pacific Northwest National Laboratory Richland WA USA

2. University of Minnesota Minneapolis MN USA

Abstract

AbstractLarge‐scale river models are being refined over coastal regions to improve the scientific understanding of coastal processes, hazards and responses to climate change. However, coarse mesh resolutions and approximations in physical representations of tidal rivers limit the performance of such models at resolving the complex flow dynamics especially near the river‐ocean interface, resulting in inaccurate simulations of flood inundation. In this research, we propose a machine learning (ML) framework based on the state‐of‐the‐art physics‐informed neural network (PINN) to simulate the downscaled flow at the subgrid scale. First, we demonstrate that PINN is able to assimilate observations of various types and solve the one‐dimensional (1‐D) Saint‐Venant equations (SVE) directly. We perform the flow simulations over a floodplain and along an open channel in several synthetic case studies. The PINN performance is evaluated against analytical solutions and numerical models. Our results indicate that the PINN solutions of water depth have satisfactory accuracy with limited observations assimilated. In the case of flood wave propagation induced by storm surge and tide, a new neural network architecture is proposed based on Fourier feature embeddings that seamlessly encodes the periodic tidal boundary condition in the PINN's formulation. Furthermore, we show that the PINN‐based downscaling can produce more reasonable subgrid solutions of the along‐channel water depth by assimilating observational data. The PINN solution outperforms the simple linear interpolation in resolving the topography and dynamic flow regimes at the subgrid scale. This study provides a promising path toward improving emulation capabilities in large‐scale models to characterize fine‐scale coastal processes.

Funder

Office of Science

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3