Affiliation:
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD)/China Meteorological Administration Aerosol‐Cloud and Precipitation Key Laboratory Nanjing University of Information Science & Technology Nanjing China
2. China Meteorological Administration Key Laboratory of Cloud‐Precipitation Physics and Weather Modification (CPML) Beijing China
3. Hulun Buir Meteorological Bureau Hulun Buir China
Abstract
AbstractMixed‐phase stratiform clouds contain numerous liquid, mixed‐phase, and ice clusters, quantifying the cluster scales is potentially helpful to improve the parameterizations of microphysics and radiation models. However, the scales of hydrometeor clusters at different levels of stratiform clouds are not well understood. In this study, using airborne measurements and a large eddy simulation, we show that turbulence plays an important role in controlling the clusters with length of a few hundred meters, while the scales of larger clusters have stronger vertical variations from cloud base to top. The liquid clusters are the largest near the cloud top, while the lengths of ice clusters decrease from cloud base to top. The lengths of mixed‐phase clusters depend on the glaciation process, a faster glaciation results in smaller mixed‐phase clusters. The results improve our understanding on how the liquid and ice are mixed at different levels in stratiform clouds.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献