Microbial Metabolism and Environmental Controls of Acetate Cycling in the Northwest Pacific Ocean

Author:

Mao Shi‐Hai123,Zhou Zhen123ORCID,Yan Shi‐Bo123ORCID,Xu Gao‐Bin123,Li Xiao‐Jun123ORCID,Zhang Hong‐Hai123ORCID,Yang Gui‐Peng123,Zhuang Guang‐Chao123ORCID

Affiliation:

1. Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education Ocean University of China Qingdao China

2. Laboratory for Marine Ecology and Environmental Science Qingdao Marine Science and Technology Center Qingdao China

3. College of Chemistry and Chemical Engineering Ocean University of China Qingdao China

Abstract

AbstractMicrobial acetate metabolism is an important part of marine carbon cycling. We present a comprehensive study to constrain microbial acetate metabolism and its regulation in surface seawater of the northwest Pacific Ocean. We found that acetate oxidation (rate constant k: 0.016–0.506 day−1) accounted for 77.6%–99.4% of the total microbial acetate uptake, suggesting that acetate was predominantly used as a microbial energy source. Acetate also served as a significant biomass carbon source, as reflected by the elevated contribution of acetate assimilation to bacterial carbon production. Acetate turnover was largely influenced by water mass mixing and nutrient conditions. Atmospheric deposition was a source of acetate in surface water and this process can also impact the microbial acetate uptake. Microbial utilization of acetate could account for up to 25.9% of the bacterial carbon demand, suggesting the significant role of acetate metabolism in microbial carbon cycling in the open ocean.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3